За что отвечает электромагнитный клапан тнвд
Ремонт Nissan Patrol
Сайт по ремонту Ниссан Патрол
Назначение и принцип действия электромагнитных клапанов и нагнетательной секции ТНВД VP44
Клапан управления наполнением ответственен за дозирование топлива и обеспечение высокого давления впрыска, открывающего топливные форсунки через нагнетательный клапан. Дозирование топлива обеспечивается программными средствами при помощи изменения времени действия импульса тока, поступающего в электрическую обмотку клапана управления наполнением. В течение времени действия импульса происходит нагнетание давления и впрыск топлива топливными форсунками. Время действия клапана поддерживается в требуемом диапазоне электронным модулем за счёт формирования им длительности сигнала управления.
Клапан опережения впрыска приводит в действие устройство, изменяющее действительное значение угла опережения впрыска топлива — автомат опережения. Клапан управляется импульсным током переменной скважности, благодаря изменению которой регулируется величина управляющего давления топлива, действующего на исполнительный элемент автомата — подвижный поршень. Изменение положения поршня приводит к некоторому развороту кулачкового кольца нагнетательной секции относительно корпуса ТНВД и изменению момента впрыска топлива. В зависимости от направления разворота кольца различают опережение и запаздывание момента впрыска.
Таким образом, параметрами дозирования и момента впрыска топлива в ТНВД являются:
> давление топлива, развиваемое топливоподкачивающим насосом во внутренних полостях ТНВД в зависимости от частоты вращения;
> длительность импульса тока управления электромагнитным клапаном наполнения, изменяющая продолжительность впрыска топлива;
> переменная скважность тока управления электромагнитным клапаном опережения впрыска, регулирующая опережения запаздывания впрыска.
Управляемые электромагнитные клапаны применяются в качестве регулирующих и запорных устройств в каналах ТНВД VР44. Исполнительным рабочим элементом клапана является подвижный магнитный сердечник — соленоид, расположенный внутри электрической обмотки или катушки, выполненной из проводника электрического тока в форме большого количества витков. Электромагнитные клапаны управляются постоянным или импульсным токами, управление клапанами в ТНВД обеспечивается только импульсными токами. Клапаны работают в режиме, открыт или закрыт, и исполнительный элемент занимает одно из крайних положений, без регулирования сечения проходного каната. Функциональные схемы электромагнитных клапанов приведены на следующих рисунках.
Функциональная схема электромагнитных клапанов
На торце соленоида изготавливается клапан, которым соленоид запирает или открывает выполненный в корпусе канал, пропускающий рабочее вещество, конкретно в ТНВД — дизельное топливо. Открытие канала происходит в результате перемещениясоленоида внутрь катушки, при этом соленоид может занимать различные положения, чем изменяется проходное сечение у клапана и пропускная способность канала.
Клапаны имеют входное и выходное отверстая, через которые они встраиваются в управляемые магистрали.
Действующая магнитная сила втягивает соленоид внутрь катушки, при этом магнитная сила преодолевает сопротивление упругости возвратной пружины. Сила магнитного поля и соответственно, величина хода соленоида прямо пропорциональна силе электрического тока. Чем выше сила тока, тем выше магнитное действие.
В результате действия тока на соленоид начинают действовать противоположно направленные силы, и он занимает внутри катушки положение, определяемое балансом магнитной силы и силы упругости сжатой пружины. Таким образом, проходное сечение у клапана и пропускная производительность канала зависят от силы действующего электрического тока.
При обрыве тока обмотки на соленоид прекращают действовать магнитные силы, и он под воздействием возвратной пружины занимает исходное положение, при котором клапан запирает проходное отверстие канала. Прохождение по каналу рабочего вещества прекращается.
Клапан управления впрыском является регулируемым гидравлическим клапаном низкого давления, управляемым импульсным током переменной скважности. Клапан обеспечивает изменение проходного сечения управляемого топливного канала, благодаря чему регулируется величина давления топлива, действующего на исполнительный автомат опережения впрыском топлива. Величина управляемого давления зависит от значения скважности импульсного тока.
При этом оба клапана ТНВД устроены, так что в открытом состоянии клапана управления наполнением обеспечивается нагнетание высокого давления впрыска, а клапана управления моментом впрыска — изменение угла опережения впрыска топлива. В закрытом состоянии клапана управления наполнением происходит отсечка (прекращение) нагнетания давления топлива и закрытие топливных форсунок, а клапана управления моментом впрыска — прекращения регулирования величины управляющего давления топлива, угол впрыска топлива не регулируется.
Изменение длительности рабочего состояния электромагнитного клапана, зависит от режима работы двигателя и в первую очередь, от числа оборотов и нагрузки на двигатель. В каждом случае контроллер рассчитывает для любого из клапанов оптимальную длительность действия импульса тока управления, определяемую конкретными значениями частоты вращения коленчатого вала и величины нагрузки. Измерение времени действия и силы импульсного тока, при котором поддерживается рабочее положение электромагнитных клапанов (например, открытое положение клапана автомата опережения впрыска), производится через понятия времени действия и скважности импульса.
Нагнетательная секция
От топливоподкачивающего насоса топливо поступает к нагнетательной секции для наполнения камеры высокого давления. Принцип действия нагнетательной секции роторного типа приведен на следующем рисунке.
Электромагнитный клапан на нагнетательной секции открывается электрическим сигналом, поступающим от электронного модуля. Открытие клапана означает, что открывается нагнетательный канал, по которому топливо под высоким давлением поступает к основным элементам нагнетательной секции, регулирующим наполнение топливом и длительность впрыска. Электромагнитный клапан одновременно управляет двумя топливными каналами: каналом управления наполнением, обеспечивающим наполнение и слив топлива, и нагнетательным каналом, через который топливо под высоким давлением поступает к форсункам. Ротор совместно с плунжерами и роликами вращается внутри кулачкового кольца. Объем между плунжерами образует камеру высокого давления, объем которой может изменяться в результате набегания роликов на кулачки, благодаря чему плунжеры смешаются в радиальном направлении к центру. Это движение плунжеров соответствует рабочему ходу. В начале встречного движения плунжеров, то есть в момент набегания роликов на возрастающий профиль кулачков топливный канал, по которому происходит наполнение и слив, закрывается, В момент открытия клапана осевой канал ротора совмещается с каналом подачи топлива к форсунке. При набегании роликов на кулачки плунжеры перемещаются навстречу друг другу, уменьшая объем полости. В результате уменьшения объема происходит резкое повышение давления топлива, которое нагнетается к топливной форсунке. Форсунки открываются давлением топлива, обеспечивая впрыск в камеру сгорания.
Для прекращения подачи топлива клапан управления наполнением закрывается. Закрытие клапана означает противоположное состояние элементов: нагнетательный канал закрывается, но открывается канал управления наполнением и продолжает оставаться открытым. Давление в полости между плунжерами и на форсунках резко снижается, и форсунки закрываются. При дальнейшем рабочем ходе плунжеров топливо вытесняется в направлении слива обратно во внутренние полости ТНВД с низким давлением до набегания роликов на вершины кулачков. Клапан управления наполнением остается закрытым в результате вращения ротора, когда ролики начинают скользить по сбегающему профилю кулачков, плунжеры меняют направление движения на противоположное и расходятся от центра к периферии, увеличивая объем камеры высокого давления. В этом случае топливо начинает поступать в направлении наполнения по открытому каналу наполнения, заполняя увеличивающийся объем камеры высокого давления. Как только плунжеры сместятся на величину высоты профиля кулачка, электромагнитный клапан снова открывается согласно командам электронного модуля для выполнения следующего впрыска. Камера высокого давления при этом будет заполнена топливом. Положение плунжеров относительно профилей кулачков кулачкового кольца зависит от угла поворота вращающегося ротора, поэтому электронный модуль управления постоянно контролирует угловое положение ротора согласно поступающим сигналам с датчика положения ротора ТНВД. Клапан управления наполнением расположен напротив торца ротора, для удобства объяснения принципа его действия на схеме положение клапана показано произвольно. топливоподкачивающего насоса. Необходимое количество топлива сливается из полости над поршнем автомата посредством изменения проходного сечения сливного канала, в котором установлен электромагнитный клапан управления впрыском. При подаче тока управления клапан открывает сливной канал на требуемую величину открытия и часть топлива начинает сливаться из полости над поршнем, обеспечивая поддержание необходимого давления. Насосы VР44 не имеют системы смазки трущихся деталей, функцию смазки выполняет топливо, вследствие чего падение давления топлива внутри ТНВД и выход из строя топливоподкачивающего насоса являются недопустимыми.
ЛИКБЕЗ. Устройство и принцип работы электронного ТНВД.
Недавно набрёл на неплохую статью, в которой популярно и понятно описаны принципы работы электронного ТНВД. Материал содержит цветные иллюстрации на примере многим знакомого “Бошевского” ТНВД. Может оказаться интересным и полезным многим обладателям дизельных машин и просто интересующимся, так как знание принципов работы любого механизма необходима особенно тем автовладельцам кто самостоятельно осуществляет ремонты и диагностику неисправностей и сбоев работы разнообразных узлов.
———
Радиально-поршневой распределительный ТНВД представляет собой насос впрыска с электронным регулированием, имеющий собственный блок управления. Насос создаёт давление впрыска 1500 бар. Высокое давление впрыска позволяет достичь мелкодисперсного распыления топлива. Это приводит к более полному сгоранию топливно-воздушной смеси и меньшему
содержанию вредных веществ в ОГ
Подача топлива
Основные задачи радиально-поршневого распределительного ТНВД:
-забор топлива из топливного бака
-сжатие топлива до 1500 бар
-распределение топлива по цилиндрам
Движение топлива
Всасывание
Радиально-поршневой распределительный ТНВД расположен там, где раньше был установлен пластинчатый насос, всасывает топливо из топливного бака и создаёт давление в ТНВД.
За счёт давления, созданного в ТНВД, при открытом электромагнитном клапане топливо подаётся в камеру сжатия.
Сжатие
Топливо сжимается двумя плунжерами, которые приводятся от кулачковой обоймы через ролики. Привод осуществляется приводным валом.
За счёт вращательного движения приводного вала ролики нажимают на кулачки обоймы и перемещают плунжеры вовнутрь. Это приводит к сжатию топлива между плунжерами.
Распределение
Если электромагнитный клапан закрыт, топливо распределяется по отдельным цилиндрам с помощью вала распределителя и распределительной головки через обратный дроссель нагнетательного клапана и форсунку впрыска.
В распределительной головке имеются отверстия, соответствующие отдельным цилиндрам. Вал распределителя проворачивается приводным валом и соединяет камеру сжатия попеременно с каждым отверстием в распределительной головке
Радиально-поршневой распределительный ТНВД имеет собственный блок управления. Задачей блока является управление и контроль исполнительных элементов насоса впрыска. Для этого в блоке управления сохранены характеристики, точно соответствующие характеристикам насоса впрыска. Блок управления и насос впрыска образуют единый блок и прочно соединены друг с другом
Что чем управляет?
Датчики отправляют на блок управления двигателя информацию о режиме работы двигателя и о положении педали акселератора. Блок управления двигателя анализирует эту информацию и рассчитывает момент начала впрыска и необходимое количество подаваемого топлива. Полученные значения блок управления двигателя отправляет на блок управления топливного насоса. Блок управления топливного насоса рассчитывает команды управления для электромагнитного клапана регулирования количества подаваемого топлива и клапана управления опережением впрыска. При этом учитываются сигналы, поступающие в насос впрыска от блока управления двигателя и датчика угла поворота. Для контроля управления двигателя блок управления топливного насоса отправляет на блок управления двигателя обратное сообщение о режиме работы насоса впрыска. Передача сигналов между блоком управления двигателя и блоком управления топливного насоса осуществляется по шине CAN. Преимуществом шины CAN является то, что обмен всей информацией между блоком управления топливного насоса и блоком управления двигателя может осуществляться по двум проводам. Блок управления двигателя выполняет и другие задачи, например, управление исполнительными элементами системы рециркуляции ОГ и регулирование давления наддува.
Регулирование количества подаваемого топлива
На приведённом ниже обзоре системы показаны датчики, на основании сигналов которых определяется количество подаваемого топлива Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для электромагнитного клапана регулирования количества подаваемого топлива. Задачей регулирования количества подаваемого топлива является точная адаптация количества топлива к различным режимам работы двигателя.
Принцип действия:
Процесс наполнения Если электромагнитный клапан регулирования количества подаваемого топлива открыт, топливо из внутреннего пространства насоса подаётся в камеру сжатия.
Впрыск
Блок управления топливного насоса подаёт сигнал управления на электромагнитный клапан регулирования количества подаваемого топлива, клапан перекрывает подачу топлива. Все время, пока электромагнитный клапан закрыт, топливо сжимается и подаётся на форсунки впрыска. При достижении заданного блоком управления двигателя количества топлива электромагнитный клапан открывает подачу топлива из внутреннего пространства насоса. Давление падает; впрыск завершён.
При полной нагрузке двигателя объём топлива на каждый цикл впрыска составляет ок. 50 мм3.
Это равно объёму одной капли воды.
На оборотах холостого хода на каждый цикл впрыска требуется ок. 5 мм3 топлива.
Это соответствует размеру булавочной головки диаметром 2 мм.
Дополнительной задачей электромагнитного клапана регулирования количества подаваемого топлива является остановка двигателя. При выключении зажигания электромагнитный клапан открывается, сжатие топлива не происходит.
Регулирование момента впрыска
На приведённом ниже обзоре системе представлены датчики, на основании сигналов которых определяется момент начала впрыска. Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для клапана управления опережением впрыска. Задачей регулирования момента впрыска является адаптация момента впрыска к частоте вращения двигателя.
Принцип действия:
При увеличении частоты вращения впрыск должен происходить раньше. Опережение впрыска осуществляется регулятором впрыска. За счёт силы действия пружины управляющий поршень прижимается к поршню регулятора впрыска. В кольцевую полость управляющего поршня через отверстие из внутреннего пространства ТНВД поступает топливо под давлением. Клапан управления опережением впрыска определяет давление топлива в кольцевой полости управляющего поршня.
При увеличении частоты вращения клапан управления опережением впрыска увеличивает давление топлива в кольцевой полости. За счёт этого управляющий поршень отжимается от поршня регулятора впрыска, преодолевая силу действия пружины, и открывает канал. Топливо поступает в полость за поршнем регулятора впрыска.
За счёт давления топлива поршень регулятора впрыска перемещается вправо. Поршень регулятора впрыска соединён с кулачковой обоймой так, что горизонтальное движение регулятора впрыска проворачивает кулачковую обойму в направлении опережения впрыска.
Изучаем ТНВД
Топливный насос высокого давления (сокр. ТНВД) — одно из основных и сложных устройств дизельного мотора. Он подает топливо в двигатель. Качественный ремонт дизельного ТНВД требует профессиональное оборудование для диагностики и регулировки. Наша специализированная станция оснащена таким оборудованием.
В подавляющем большинстве случаев, ремонт ТНВД необходим по причине применения низкокачественного топлива и моторных масел. При попадании с дизтопливом твердых частиц, пыли и т.п. способствует выходу из строя плунжерных пар, установка которых производится с микронным допуском. Также могут пострадать форсунки отвечающие за распыление и впрыск горючего. Основными признаками несправности в работе насоса и форсунок являются: увеличение расхода, дымность, посторонние шумы, снижение мощности, трудный запуск.
Самые современные моторы стали оснащаться электронными системами впрыска. Теперь ЭБУ отвечает за дозировку подачи топлива в цилиндры по времени и по количеству солярки. При появлении каких либо перебоев в работе следует, не откладывая, обратиться в дизель-сервис с профессиональным диагностическим оборудованием. В ходе ремонта топливного насоса высокого давления потребуется замена некоторых деталей. Диагностика позволяет определить степень износа и остаточный ресурс запчастей, позволяя съэкономить (не менять же всё подряд).
В ходе работ выясняется равномерность подачи топлива, стабильность давления, частота вращения вала и т.д.
По мере ужесточения норм допустимого выброса вредных веществ в атмосферу транспортными средствами, традиционные механические топливные насосы высокого давления (ТНВД) дизельных автомобилей оказались не в состоянии обеспечить необходимую точность дозирования топлива и скорость реагирования на изменяющиеся условия движения. Это привело к необходимости установки электронного регулирования топливной системы дизельного двигателя. Фирмами Bosch, Diesel Kiki и Nippon Denso был разработан ряд систем электронного управления подачей топлива на базе топливного насоса VЕ. Эти системы обеспечили повышение точности дозирования топлива в отдельные цилиндры, уменьшение межцикловой нестабильности процесса сгорания и уменьшение неравномерности работы дизеля в режиме холостого хода. В отдельных системах устанавливается быстродействующий клапан, который позволяет разделить процесс впрыска на две фазы, что уменьшает жесткость процесса сгорания.
Точное регулирование системы впрыска, не только способствует снижению выброса токсичных веществ в результате более полного сгорания топлива, но и повышает КПД двигателя и увеличение мощности.
В электронных системах применяются топливные насосы распределительного типа, которые дополнены управляемыми исполнительными устройствами для регулирования положения дозатора и клапана автомата опережения впрыска топлива.
Электронный блок управления получает сигналы от множества датчиков, таких как положения педали акселератора, частоты вращения вала двигателя, температуры охлаждающей жидкости и топлива, подъема иглы форсунок, скорости движения автомобиля, давления наддува и температуры воздуха на впуске.
Эти сигналы обрабатываются в электронном блоке управления. Суммированный сигнал посылается в ТНВД, обеспечивая подачу оптимального количества топлива к форсункам и оптимальный угол опережения впрыска в соответствии с эксплуатационными условиями. Если подключается дополнительная нагрузка (например, включают кондиционер воздуха), то в электронный блок управления приходит соответствующий сигнал, и дополнительная нагрузка компенсируется увеличением подачи топлива. Электронный блок управления также контролирует работу свечей накаливания в трех стадиях – период накаливания, установившийся режим работы свечей накаливания и период после накаливания, в зависимости от температуры.
Рис. 1. Схема электронного регулирования одноплунжерного топливного насоса типа VE фирмы Bosch дизельного двигателя.
Рис.2. Схема системы электронного управления одноплунжерного ТНВД: 1 – датчик начала впрыска; 2 – датчик ВМТ и частоты вращения коленчатого вала; 3 – расходомер воздуха; 4 – датчик температуры охлаждающей жидкости; 5 – датчик положения педали подачи топлива; 6 – блок управления; 7 – исполнительное устройство ускорителя пуска и прогрева двигателя; 8 – исполнительное устройство управления клапаном рециркуляции отработавших газов; 9 – исполнительное устройство управления углом опережения впрыска; 10 – исполнительное устройство привода дозирующей муфты; 11 – датчик хода дозатора; 12 – датчик температуры топлива; 13 – ТНВД
Основным элементом системы является электромагнитное исполнительное устройство 10, которое перемещает дозирующую муфту ТНВД.
Управление процессами топливоподачи осуществляется с помощь блока управления 6. В блок управления поступает информация от различных датчиков: начала впрыска 1, установленного в одной из форсунок впрыска топлива; верхней мертвой точки и частоты вращения коленчатого вала 2; расходомера воздуха 3; температуры охлаждающей жидкости 4; положения педали топлива 5 и др. В соответствии с заданными в памяти блока управления характеристиками управления и полученной информацией от датчиков блок управления выдает выходные сигналы на исполнительные механизмы управления цикловой подачей и углом опережения впрыска топлива. Таким образом, регулируется величина цикловой подачи топлива от холостого хода до режима полной нагрузки, а также во время холодного пуска.
Потенциометр исполнительного устройства посылает сигнал обратной связи в электронный блок управления, определяя точное положение дозирующей муфты. Угол опережения впрыскивания топлива регулируется подобным же образом.
Электронный блок управления формирует сигналы, обеспечивающие протекание регуляторных характеристик, стабилизацию частоты вращения холостого хода, рециркуляцию ОГ, степень которой определяется по сигналам датчика массового расхода воздуха. При этом в блоке управления сопоставляются реальные сигналы датчиков со значениями в запрограммированных полях характеристик, в результате чего на сервомеханизм исполнительных устройств передается выходной сигнал, обеспечивающий требуемое положение дозирующей муфты с высокой точностью регулирования.
В систему заложена программа самодиагностики и отработки аварийных режимов, что позволяет обеспечить движение автомобиля при большинстве неисправностей, кроме выхода из строя микропроцессора.
В большинстве случаев, для одноплунжерных насосов высокого давления распределительного типа, в качестве исполнительного устройства, регулирующего цикловую подачу, используется электромагнит 6 (рис.) с поворотным сердечником, конец которого соединен через эксцентрик с дозирующей муфтой 5. При прохождении тока в обмотке электромагнита сердечник поворачивается на угол от 0 до 60°, соответственно перемещая дозирующую муфту 5, с помощью которой происходит изменение цикловой подачи.
Основным элементом системы является электромагнитное исполнительное устройство 10, которое перемещает дозирующую муфту ТНВД.
Рис.3. Развернутая схема одноплунжерного насоса с электронным управлением: 1 – ТНВД; 2 – электромагнитный клапан управления автоматом опережения впрыскивания; 3 – жиклер; 4 – цилиндр автомата опережения впрыскивания; 5 – дозатор; 6 – электромагнитное устройство изменения подачи топлива; 7 – электронный блок управления; 8 – датчики температуры, давления наддува, положение подачи топлива; 9 – педаль управления; 10 – возврат топлива; 11 – подача топлива к форсунке
Управление автоматом опережения впрыска осуществляется электромагнитным клапаном 2, который регулирует давление топлива, действующего на поршень автомата. Клапан работает в импульсном режиме «открыт — закрыт», модулируя давление в зависимости от частоты вращения распределительного вала двигателя. Когда клапан открыт, давление уменьшается, и угол опережения впрыскивания также уменьшается. Когда клапан закрыт, давление увеличивается, перемещая поршень автомата в сторону увеличения угла опережения впрыска. Отношение импульсов определяется электронным блоком в зависимости от режима работы и температурного состояния двигателя. Для определения момента начала впрыска одна из форсунок имеет индукционный датчик подъема иглы.
В качестве исполнительных механизмов, воздействующих на органы, управляющие подачей топлива в ТНВД, применяются пропорциональные электромагнитные, моментные, линейные или шаговые электродвигатели, которые служат в качестве непосредственного привода дозатора топлива в насосах распределительного типа.
Рис.4. Электромагнитный исполнительный механизм ТНВД распределительного типа: 1 – датчик хода дозатора; 2 – исполнительное устройство; 3 – дозатор; 4 – клапан изменения угла начала впрыска с электромагнитным приводом
В корпус форсунки встроена катушка возбуждения 2 (рис.), на которую электронный блок управления подает определенное опорное напряжение, чтобы ток в электрической цепи поддерживался постоянным, независимо от изменений температуры.
Рис.5. Схема форсунки с датчиками подъема иглы: 1 – регулировочный винт; 2 – катушка возбуждения; 3 – шток; 4 – провод; 5 – электрический разъем
Этот ток создает вокруг катушки магнитное поле. Как только игла форсунки поднимается, сердечник 3 изменяет магнитное поле, вызывая изменение сигнала напряжения. В определенный момент подъема иглы возникает пиковый импульс, который воспринимается электронным блоком управления и используется для управления углом опережения впрыска. Этот сигнал сравнивается с хранящимися в памяти электронного блока значениями для соответствующих эксплуатационных условий работы дизеля. Электронный блок управления посылает обратный сигнал на электромагнитный клапан, соединенный с рабочей камерой автомата опережения впрыскивания и давление, действующее на поршень автомата, изменяется, в результате чего поршень перемещается под действием пружины, изменяя угол опережения впрыскивания.
Максимальное давление впрыска, достигаемое электронным управлением топливоподачей на базе топливного насоса VЕ составляет 150 кгс/см2. Однако ресурсы этой конструктивной схемы по напряжениям в сложном кулачковом приводе практически исчерпаны. Более совершенными являются ТНВД следующего поколения – VP-44.
Она использована на последних моделях дизелей Opel Ecotec, Opel Astra, Audi, Ford, BMW, Daimler-Chrysler. Давление впрыска, развиваемое насосами такого типа достигает 1000 кгс/см2.
Рис.6 Система непосредственного впрыска дизельного двигателя с ТНВД VP-44: А – датчики и исполнительные механизмы; В – приборы; С – контур низкого давления; Д – система подачи воздуха; Е – система нейтрализации вредных веществ в отработавших газах; М – крутящий момент; CAN – бортовой контроллер связи; 1 – датчик хода педали управления подачей топлива; 2 – механизм выключения сцепления; 3 – контакты тормозных колодок; 4 – регулятор скорости автомобиля; 5 – выключатель свечения накаливания и стартера (замок зажигания); 6 – датчик скорости автомобиля; 7 – индуктивный датчик частоты вращения коленчатого вала; 8 – датчик температуры охлаждающей жидкости; 9 – датчик температуры воздуха на впуске; 10 – датчик давления наддува; 11 – пленочный датчик массового расхода воздуха на впуске; 12 – комбинированная панель приборов; 13 – кондиционер с системой управления; 14 – колодка диагностики для подключения сканера; 15 – блок управления временем включения свечей накаливания; 16 – привод ТНВД; 17 – блок управления двигателем и ТНВД; 18 – ТНВД; 19 – топливный фильтр; 20 – топливный бак; 21 – датчик хода иглы форсунки первого цилиндра; 22 – штифтовая свеча накаливания; 23 – двигатель
Особенностью приведенной системы является совмещенный блок управления как для ТНВД, так и для других систем двигателя. Блок управления состоит из двух частей, оконечные каскады, питания электромагнитов которых расположены на корпусе ТНВД.
Рис.7. Топливный насос высокого давления VP-44: 1 – топливоподкачивающий насос; 2 – датчик частоты и положения вала насоса; 3 – блок управления; 4 – золотник; 5 – электромагнит подачи; 6 – электромагнит угла опережения впрыска топлива; 7 – гидропривод устройства для изменения угла опережения впрыска топлива; 8 – ротор; 9 – кулачковая шайба
Контур низкого давления. Топливоподкачивающий насос (рис.) в ТНВД VP-44 шиберного типа, аналогичный рассмотренным выше. Давление топлива, создаваемое топливоподкачивающим насосом на стороне нагнетания, зависит от частоты вращения колеса насоса. В то же время это давление при возрастании частоты вращения увеличивается непропорционально. Клапан регулирования давления располагается в непосредственной близости от топливоподкачивающего насоса и соединяется с отводящим пазом через отверстие, пропускающее поток 5. Клапан изменяет давление нагнетания, создаваемое топливоподкачивающим насосом, в зависимости от требуемого расхода топлива. Топливо от топливоподкачивающего насоса поступает к насосной секции ТНВД и устройству опережения впрыскивания.
Рис.8. Гидравлическая схема ТНВД VP-44: 1 – блок управления работой дизеля; 2 – клапан регулирования давления; 3 – поршень клапана регулирования давления; 4 – клапан дросселирования перепуска; 5 – отводной канал; 6 – дроссель; 7 блок управления ТНВД; 8 – поршневой демпфер; 9 – электромагнитный клапан управления подачей; 10 – нагнетательный клапан; 11 – форсунка; 12 – электромагнитный клапан установки момента начала впрыскивания; 13 – ротор-распределитель; 14 – насосная секция ТНВД с радиальным движением плунжеров; 15 – датчик угла поворота приводного вала ТНВД; 16 – устройство опережения впрыскивания; 17 – топливоподкачивающий насос
Если создаваемое давление топлива превышает определенную величину, торцевая кромка поршня 3 открывает отверстия, расположенные радиально, и через них поток топлива сливается по каналам насоса к подводящему пазу. Если давление топлива слишком мало, эти радиальные отверстия закрыты вследствие преобладания сил пружины. Предварительный натяг пружины определяет, таким образом, величину давления открытия клапана.
Для охлаждения топливоподкачивающего насоса и удаления из него воздуха топливо проходит через привинченный к корпусу насоса клапан дросселирования перепуска 4.
Этот клапан осуществляет отвод топлива через перепускной канал 5. В корпусе клапана находится нагруженный пружиной шарик, который позволяет вытекать топливу только по достижении определенной величины давления в канале.
Дроссель 6 очень малого диаметра, связанный с линией отвода, расположен в корпусе клапана параллельно основному каналу отвода топлива. Он обеспечивает автоматическое удаление воздуха из насоса. Весь контур низкого давления ТНВД рассчитан на то, что в топливный бак через клапан дросселирования перепуска всегда перетекает некоторое количество топлива.
Контур высокого давления. В контур высокого давления (рис.) входят ТНВД, а также узел распределения и регулирования величины и момента начала подачи с использованием только одного элемента — электромагнитного клапана высокого давления. Создание высокого давления насосной секции ТНВД с радиальным движением плунжеров
Насосная секция ТНВД с радиальным движением плунжеров создает требуемое для впрыскивания давление величиной до 1000 кгс/см2. Она приводится через вал и включает в себя: — соединительную шайбу; — башмаки 4 с роликами 2; — кулачковую шайбу 1; — нагнетающие плунжеры 5; — переднюю часть (головку) вала-распределителя 6.
Рис.9. Примеры расположения плунжеров: а – для четырех или шести цилиндров; b – для шести цилиндров; с – для четырех цилиндров; 1– кулачковая шайба; 2 – ролик; 3 – направляющие пазы приводного вала; 4 – башмак ролика; 5 – нагнетающий плунжер; 6 – вал-распределитель; 7 – камера высокого давления
Крутящий момент от приводного вала передается через соединительную шайбу и шлицевое соединение непосредственно на вал-распределитель. Направляющие пазы 3 служат для того, чтобы через башмаки 4 и сидящие в них ролики 2 обеспечить работу нагнетающих плунжеров 5 сообразно внутреннему профилю кулачковой шайбы 1. Количество кулачков на шайбе соответствует числу цилиндров двигателя. В корпусе вала-распределителя нагнетающие плунжеры расположены радиально, что и дало название этому типу ТНВД. На восходящем профиле кулачка плунжеры совместно выдавливают топливо в центральную камеру высокого давления 7. Е зависимости от числа цилиндров двигателя и условий его применения существуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерам (рис. 9 а, b, с).
Распределение топлива с помощью корпуса-распределителя Корпус-распределитель (рис. 9) состоит из:
• пригнанной к нему распределительной втулки 3;
• расположенной в распределительной втулке задней части вала-распределителя 2;
• запирающей иглы 4 электромагнитного клапана 7 высокого давления;
• аккумулирующей мембраны 10, разделяющей полости подкачки и слива;
• штуцера 16 магистрали высокого давления с нагнетательным клапаном 15.
Рис.10. Корпус-распределитель: а — фаза наполнения b — фаза нагнетания: 1 – плунжер; 2 – вал-распределитель; 3 – распределительная втулка; 4 – запирающая игла электромагнитного клапана высокого давления; 5 – канал обратного слива топлива; 6 – фланец; 7 – электромагнитный клапан высокого давления; 8 – канал камеры высокого давления; 9 – кольцевой канал впуска топлива; 10 – аккумулирующая мембрана, разделяющая полости подкачки и слива; 11 – полость за мембраной; 12 – камера низкого давления; 13 – распределительная канавка; 14 – выпускной канал; 15 – нагнетательный клапан; 16 – штуцер магистрали высокого давления
В фазе наполнения на нисходящем профиле кулачков радиально движущиеся плунжеры 1 перемещаются наружу, к поверхности кулачковой шайбы. Запирающая игла 4 при этом находится в свободном состоянии, открывая канал впуска топлива. Через камеру низкого давления 12, кольцевой канал 9 и канал иглы топливо направляется от топливоподкачивающего насоса по каналу 8 вала-распределителя и заполняет камеру высокого давления. Излишек топлива вытекает через канал 5 обратного слива.
В фазе нагнетания плунжеры 1 при закрытой игле 4 перемещаются на восходящем профиле кулачков к оси вала-распределителя, повышая давление в камере высокого давления.
Благодаря этому топливо под высоким давлением движется по каналу 8 камеры высокого давления. Затем топливо через распределительную канавку 13, которая в этой фазе соединяет вал-распределитель 2 с выпускным каналом 14, штуцер 16 с нагнетательным клапаном 15, магистраль высокого давления и форсунку поступает в камеру сгорания двигателя.
Дозирование топлива с помощью электромагнитного клапана высокого давления.
Для дозирования цикловой подачи в контур высокого давления ТНВД встроен электромагнитный клапан высокого давления. В начале процесса впрыскивания на катушку 5 электромагнита подается напряжение, и якорь 4 перемещает иглу 4, прижимая ее к седлу 1. Если игла постоянно прижата к седлу, топливо не поступает, поэтому давление топлива в контуре быстро поднимается, открывая, таким образом, соответствующую форсунку. После того как необходимое количество топлива попало в камеру сгорания, напряжение с катушки 5 электромагнита снимается, электромагнитный клапан высокого давления открывается и давление в контуре снижается. Это влечет за собой запирание форсунки и окончание впрыскивания.
Точность управления этим процессом зависит от момента окончания работы электромагнитного клапана, что определяется моментом снятия напряжения с катушки.
К электромагнитному клапану 7 высокого давления по сигналу блока управления ТНВД в катушку электромагнита подается напряжение, и якорь перемещает иглу 4, прижимая ее к седлу 1. Если игла прижата к седлу, топливо поступает только в выпускной канал высокого давления 14 соединенный с нагнетательным клапаном 15, где давление резко повышается, а от него к форсунке. Дозирование подачи топлива определяется интервалом между моментом начала подачи и моментом открытия электромагнитного клапана и называется продолжительностью подачи. Продолжительность закрытия электромагнитного клапана, определяемая блоком управления, регулирует, таким образом, величину цикловой подачи топлива. После окончания впрыска, электромагнит клапана обесточивается, при этом электромагнитный клапан высокого давления открывается, и давление в контуре снижается, прекращая подачу топлива к форсунке.
Избыточное топливо, которое нагнетается вплоть до прохождения роликом плунжера верхней точки профиля кулачка, направляется через специальный канал в пространство за аккумулирующей мембраной. Скачки высокого давления, которые при этом возникают в контуре низкого давления, демпфируются аккумулирующей мембранной. Кроме того, это пространство сохраняет аккумулированное топливо для процесса наполнения перед последующим впрыскиванием.
Дня останова двигателя с помощью электромагнитного клапана полностью прекращается нагнетание под высоким давлением. Следовательно, не требуется дополнительный остановочный клапан, как это имеет место в распределительных ТНВД с управлением регулирующей кромкой.
Демпфирование волн давления с помощью нагнетательного клапана с дросселированием обратного потока. Нагнетательный клапан 15 с дросселированием обратного потока в конце очередного впрыскивания топлива предотвращает новое открытие распылителя форсунки, что исключает появление подвпрыскивания, которое возможно в результате появления волн давления или их отражений. Подвпрыскивание отрицательно сказывается на токсичности ОГ.
С началом подачи конус 3 клапана открывает клапан. Теперь топливо нагнетается через штуцер и магистраль высокого давления к форсунке. По окончании нагнетания давление топлива резко падает, и возвратная пружина прижимает конус клапана к его седлу. Обратные волны давления, возникающие при закрытии форсунки, гасятся дросселем нагнетательного клапана, что предотвращает подвпрыскивание топлива в камеру сгорания.
Устройство опережения впрыскивания топлива. Наиболее благоприятно процесс сгорания, равно как и лучшая отдача дизеля по мощности, протекает только в том случае, когда момент начала сгорания соответствует определенному положению коленчатого вала или поршня в цилиндре. Задачей устройства опережения впрыскивания является увеличение угла начала подачи топлива при повышении частоты вращения коленчатого вала. Это устройство, состоящее из датчика угла поворота приводного вала ТНВД, блока управления и электромагнитного клапана установки момента начала впрыскивания, обеспечивает оптимальный момент начала впрыскивания соответственно условиям эксплуатации двигателя, чем компенсирует временной сдвиг, определяемый сокращением периода впрыскивания и воспламенения при увеличении частоты вращения.
Устройство опережения впрыскивания, оснащенное гидравлическим приводом, встроено в нижнюю часть корпуса ТНВД поперек его продольной оси.
Кулачковая шайба 1 входит своей шаровой цапфой 2 в поперечное отверстие плунжера 3 так, что поступательное движение последнего превращается в поворот кулачковой шайбы. В середине плунжера находится регулировочный клапан 5, который открывает и закрывает управляющие отверстия в плунжере. По оси плунжера 3 расположен нагруженный пружиной 10 управляющий поршень 12, который задает положение регулировочного клапана.
Поперек оси плунжера находится электромагнитный клапан 15 установки момента начала впрыскивания. Блок управления ТНВД воздействует на плунжер устройства опережения впрыскивания с помощью этого клапана (рис.), на который непрерывно подаются импульсы тока постоянной частоты и переменной скважности. Клапан изменяет давление, действующее на управляющий поршень.
Рис.11. Устройство опережения впрыскивания: 1 – кулачковая шайба; 2 – шаровая цапфа; 3 – плунжер установки угла опережения впрыскивания; 4 – подводной/отводной канал; 5 – регулировочный клапан; 6 – шиберный топливоподкачивающий насос; 7 – выход топлива; 8 – вход топлива; 9 – подвод от топливного бака; 10 – пружина управляющего поршня; 11 – возвратная пружина; 12 – управляющий поршень; 13 – кольцеобразная камера гидравлического упора; 14 – дроссель; 15 – электромагнитный клапан установки момента начала впрыскивания (в закрытом положении)
Рис.12. Электромагнитный клапан установки момента начала впрыскивания: 1 – седло клапана; 2 – направление закрытия; 3 – игла клапана; 4 – якорь электромагнита; 5 – катушка; 6 – электромагнит

































