За что отвечает механическая ткань
Особенности строения и функции механической ткани растений
Клетки животных и растений состоят из разных волокон. Они различаются по строению и выполняемым функциям. Из 6 групп наиболее важной считается механическая ткань растений. Она помогает им выстоять в ветреную погоду. Названия других волокон: образовательные, проводящие, выделительные.
Описание волокон
Растения являются многоклеточными организмами, представленными в виде мхов, папоротников, цветков, водорослей. Их клетки имеют плотные оболочки и хлоропласты (пластиды зеленого цвета), обеспечивающие фотосинтез (процесс получения энергии из неорганических веществ). На рисунках со строением растительных клеток выделяются следующие группы волокон:
Функциональные особенности
Механическая ткань похожа на скелет, который придает опору и прочность растению. Подобные функциональные возможности позволяют живому организму переносить погодные ненастья, сохраняя свою целостность, поэтому основная функция, какую выполняет механическая ткань — защитная.
Состоит она из следующих разновидностей волокон:
Структура склеренхимы
У клеток присутствует одревесневшая и утолщенная оболочка. Внутри находится живое содержимое, которому свойственно со временем отмирать. Клеточные структуры могут пропитываться лигнином, который повышает прочность склеренхим. Значение показателя совпадает с параметром строительной стали.
Клетки, входящие в состав склеренхимы:
По структуре клетки похожи на удлиненные и заостренные оболочки с незначительным количеством пор. Склеренхимы локализуются в стебле, черешках, в центре корня. Особенность их строения заключается в том, что они мертвые (склереиды), но имеют прочную древесную оболочку. В комплексе склеренхимы делают растение устойчивым по отношению к сильным ветрам, непогоде.
Функции склереиды
Механическая ткань склереида имеет тонкие стенки и образуется за счет постепенно отмирания протопласта (содержимое растительной клетки) с последующим одревеснением оболочки и многократного ее утолщения. Существует 2 способа развития клеток:
Из склереид формируется скорлупа орехов и косточки разных плодов. Они могут быть короткими, каменистыми, разветвленными, удлиненными. Подобные структуры могут присутствовать в мякоти плодов с целью их защиты от поедания животными и птицами. Склереиды любого типа помогают механической ткани выполнять опорную функцию.
Они защищают семена от температурных перепадов, предупреждая поражение плода грибком и бактериями. Кроме защитной функции, механические ткани формируют устойчивый и полноценный каркас.
По количеству склеренхим меньше всего в водорослях, так как вода выполняет для них функцию опоры. Незначительной степени одревесневания подвергаются тропические растения и представители влажного места обитания. Растения, которые обитают в засушливых зонах, состоят из большого количества механической ткани. Колленхима больше присутствует у однолетних двудольных представителей. Однодольные многолетние травы, кустарники и деревья больше состоят из склеренхимы.
Механические ткани растений
Механические ткани это опора и каркас растения, как скелет у человека. Они пронизывают все части растения, для того чтобы растение было способно противостоять смещению центра тяжести: нагрузкам на сжатие, изгиб и растяжение.
Классифицируют механические ткани на основе микроскопической картины: выделяют ткани с равномерно утолщенными клеточными стенками и неравномерно утолщенными.
Колленхима имеет неравномерно утолщенные клеточные стенки, в основе которых находятся полисахариды: целлюлоза, гемицеллюлозы. Важно отметить, что клетки колленхимы являются хлорофиллоносными, то есть способны к фотосинтезу, так что в подземных частях растения колленхима не встречается. Эта ткань подразделяется на следующие составляющие:
Характерна для молодых стеблей многих деревьев. В отличие от уголковой колленхимы клетки имеют форму параллелепипеда, вытянуты параллельно поверхности стебля, их наружные и внутренние стенки утолщены.
На раннем этапе развития клетки данной ткани разъединяются в углах с последующим образованием межклетников (пространства в тканях растения), имеются в стеблях красавки, мать-и-мачехи, горца земноводного.
Представлены вытянутыми и заостренными клетками, форма которых называется «прозенхимная». Клетки плотно прилежат друг к другу, их оболочка очень прочная, клеточные стенки утолщены равномерно. Волокна встречаются во всех органах растения в виде тяжей, могут быть рассеянны в проводящей ткани, собираться в группы или идти сплошным цилиндрическим кольцом.
Стенки этих клеток сильно одревесневшие, могут быть пропитаны кремнеземом, известью, кутином. В случае, если диаметр клеток одинаковый (плоды груши) их также называют каменистые клетки (брахисклереиды). Палочковидные склереиды встречаются в семенах бобовых. Остеосклереиды имеют расширение на обоих концах клетки, встречаются в листьях чая. В листьях камелии cклереиды приобретают удивительную форму, напоминающую звезду, они называются астросклереидами.
Как вы уже убедились, склереиды представляют собой мертвые клетки самых различных форм, обнаруживаются во многих органах растения.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Разновидности тканей
Растительный организм состоит из нескольких видов тканей. Они различаются по строению и функциям. Основные группы тканевых структур:
Общая характеристика
Чтобы было проще понять, какое место занимают механические ткани в жизни растений и что они делают, стоит вспомнить, как много неблагоприятных факторов воздействует на организмы. Климатические катаклизмы, жара, холод, недостаток и избыток влаги, солнечные лучи, угроза стать пищей животных — всё это растения испытывают на себе ежесекундно.
Благодаря ткани, включённой в структуру организма, дикорастущие и культурные виды растений переносят землетрясения, сильные ветры, снегопады, ливни и прочие явления природы. Каждое растение приспосабливается к окружающей среде по-разному. Все 6 типов ткани неодинаково концентрируются в частях растений даже в рамках одного вида. Во всех случаях функциональная значимость обусловлена необходимостью защиты от внешних угроз. Кроме того, с её участием протекают процессы жизнедеятельности.
По мнению ботаников, механическую ткань можно сравнить с остовом или скелетом. Подобно арматуре она обеспечивает прочность и устойчивость живого организма, его способность выживать в изменчивых условиях. Роль механической ткани в растении состоит в том, что она помогает сохранять целостность.
Пример: при шквалистом ветре деревья гнутся, но не ломаются. В этом случае срабатывают защитные свойства тканей.
Строение клеточных структур помогает при катаклизмах не только большим деревьям, но и кустарникам, полукустарникам, травам. Степень защиты во всех случаях разная, но в целом именно такое строение механической ткани обеспечивает хорошую приспособляемость к негативным факторам.
Классификация по типу строения
Структура слоёв различается, в зависимости от этого их делят на несколько видов. Все они формируются из меристемы, которая бывает первичной и вторичной. Меристематическая ткань — это обобщающее название для частей растения, состоящих из клеток, сохраняющих жизнеспособность и интенсивно делящихся на протяжении всей жизни. Типы структур:
Клетки этих структур устроены особым образом: они имеют довольно толстые стенки, которые придают устойчивость живому организму. Благодаря такой структуре растение имеет возможность противостоять факторам, описанным выше. Внутри клеток есть содержимое, которое бывает мёртвым или живым. Структурные элементы склереиды рассматриваются некоторыми учёными как часть склеренхимы.
Особенности колленхимы
В процессе эволюции колленхима образовалась из основной ткани. В ней может содержаться некоторое количество хлорофилла, тогда с участием этой структуры осуществляется фотосинтез. Колленхима есть только у молодых растений. Она находится сразу за покровной тканью, выстилая отдельные органы, но иногда может располагаться глубже. Эта ткань способна выполнять свою функцию только тогда, когда клетки сохраняют тургор.
Все клетки колленхимы непрерывно растут и делятся, сохраняя жизнеспособность до окончания периода вегетации. У них утолщённые оболочки, благодаря которым тканевая структура выполняет опорную функцию. Вода проникает внутрь через поры в защитном слое. Клетки вбирают ровно столько влаги, сколько требуется для поддержания тургора. Когда достигается определённое давление, всасывание влаги прекращается. В зависимости от того, какое сочленение имеют клетки, в биологии есть 3 вида колленхимы:
В теле растения колленхимой богаты листья и черешки. Также она присутствует в стебле, окружая его наподобие цилиндра. Все клетки ткани живые и неодревесневшие, поэтому они не создают помех для роста побегов, листьев и цветков. Основные функции — опорная и фотосинтезирующая, причём первая осуществляется в меньшей степени, так как в большей мере поддержку обеспечивает склеренхима.
Колленхима очень прочная. Если внести результаты опытов с измерениями в таблицу, станет видно, что по прочности на разрыв ткань не уступает свинцу, алюминию и некоторым другим металлам. В старых органах она может образовывать одревесневшие оболочки.
Описание и функции склеренхимы
Клетки этого типа отличаются тем, что их оболочки обычно одревесневшие. Они сильно утолщены со всех сторон. Живое вещество — протопласт. По мере взросления клетки оно отмирает. Повышенную прочность клетка приобретает благодаря тому, что её вещество пропитывается лигнином. Это сложное полимерное соединение, входящее в состав почти всех видов растений. Склеренхима отличается высокой прочностью на излом. По этому параметру она не уступает стали. Структуру ткани образует несколько типов клеток:
Строение и расположение каждого типа различаются. Волокна — это прозенхимные структуры с небольшим количеством пор и одревесневшими оболочками. На рисунках в книгах по биологии видно, что эти клетки вытянуты в длину и имеют заострённые концы. Части растения, где сконцентрированы волокна:
Все эти участки характеризуются тем, что в них заканчиваются ростовые процессы. Либроформа и остальные типы клеток играют важную роль, поскольку они окружают проводящие ткани. Особенность склеренхимы в том, что все её клетки не содержат живого вещества и окружены прочной одревесневшей оболочкой. Благодаря этой ткани растения приобретают устойчивость, не ломаются под сильными порывами ветра и тяжестью снежного покрова.
Склеренхима образуется из прокамбия, камбия и меристемы. В растительном организме она находится в листьях, плодоножках, цветоложе, корнях, черешках, цветоножках и стволовой части.
Функция ткани состоит в том, чтобы образовывать крепкий и целостный каркас, который служит скелетом. Он помогает растениям переносить динамические нагрузки, возникающие в связи с природными катаклизмами. Благодаря одревесневшим тканям деревья выдерживают массу кроны. В процессе фотосинтеза склеренхима не участвует, поскольку в её структуре нет живых клеток.
Образование, расположение и свойства склереид
Склереиды формируются из обычных клеток. Это происходит так: протопласт постепенно отмирает, а оболочки утолщаются, при этом происходит их одревеснение. Склереиды образуются из паренхимы и первичной меристемы. Места, где они локализуются, позволяют понять, насколько высока прочность таких структур. Части растения, в которых присутствуют склереиды:
Некоторые виды формируют плоды, в структуру которых также включена ткань этого вида. Благодаря такому строению вещество становится непривлекательным для животных. Варианты формы клеток:
Значение клеток обусловлено тем, что они выполняют арматурные функции, но их роль этим не ограничивается. Благодаря склереидам растительные организмы хорошо переносят температурные перепады, противостоят бактериям и грибам, восстанавливаются после повреждения животными. В комплексе с другими видами тканевых структур склереиды формируют механический каркас, отличающийся высокой устойчивостью.
У разных видов ткань этого типа распределяется неодинаково. Так, у водорослей, относящихся к низшим растениям, она расположена по всему организму, но присутствует в минимальном количестве. Виды, растущие в воде, практически не нуждаются в опоре, поэтому склеренхима им почти не нужна.
Растения, которые встречаются в тропиках или просто во влажной среде, также не склонны к одревеснению (склерификации). Зато у тех видов, что произрастают в засушливых регионах, наблюдается максимальное одревеснение и утолщение клеточных оболочек. Экологи называют такие растения склерофитами. За счёт сильного развития механических тканей растительные организмы отлично приспособлены к жизнедеятельности в засушливых условиях.
Важно, что содержание различных видов тканевых структур различается у однодольных и двудольных видов.
Первые склонны формировать большое количество склеренхимы. Это особенность деревьев, кустарников и многолетних трав. Для двудольных однолетних видов больше характерно образование колленхимы.
Строение, роль и функции механической ткани растений
Населяющие сушу растительные организмы постоянно подвергаются воздействию ветра, силы тяжести, снегопадов т. д. Кроме этого, они могут вытаптываться человеком или животными. Основная задача механической ткани растений заключается в противодействии нагрузкам на растяжение, сжатие и изгиб. Эти покровы являются своеобразным каркасом, пронизывающим все части растительного организма.
Классификация покровов
Растения имеют несколько типов тканей. Они различаются строением и выполняемыми функциями. Выделяют 6 типов покровов растительных организмов:
Общая характеристика
Чтобы быстрее разобраться с функциями механического покрова растений, следует вспомнить различные неблагоприятные факторы внешней среды, воздействие которых они испытывают ежесекундно. Однако благодаря наличию в их структуре особой ткани, растительные организмы способны переносить сильный ветер, землетрясения, ливневые дожди и т. д.
Каждое растение в процессе эволюции приспособилось к среде своего обитания. Именно поэтому все виды тканей даже у растительных организмов одного вида концентрируются в их частях по-разному. Таким образом, функционал механической ткани обусловлен необходимостью защиты от негативного воздействия внешней среды.
Основная роль механической ткани заключается в сохранении целостности растения. В качестве примера можно привести деревья, которые под воздействием ветра гнуться, но не ломаются.
Строение механической ткани
Познакомившись с общей характеристикой механической ткани, остается выяснить, как она выглядит и какие клетки входят в ее состав. Она состоит из нескольких типов клеточных структур. Входящие в их состав клеточки способны делиться на протяжении всего своего жизненного цикла. Выделяют два типа механического покрова:
Клетки этих структур устроены примерно одинаково. Они обладают толстыми стенками, что увеличивает устойчивость растения.
Клетки колленхимы
В основе клеточек колленхимы находятся два полисахарида: гемицеллюлаза и целлюлоза. Это один из покровов растения, где протекает фотосинтез. Таким образом, колленхима встречается только в надземных частях растительного организма. Ткань делится на три составляющие:
Устройство склеренхимы
Этот вид покрова составляют омертвевшие клеточки. Склеренхиму можно встретить только у высших растений. В сравнении с колленхимой она способны выдерживать более высокие нагрузки. Стенки клеток склеренхимы пропитаны особым веществом — лигнином. Оно представляет собой смесь полимеров.
Склеренхима бывает двух типов:
Клеточная структура склереидов имеет одну важную особенность — стенки ее элементов одревеснели и часто дополнительно пропитаны кутином, кремнеземом либо известью. При этом склереиды делятся на 4 типа: каменистые, остеосклереиды, астросклереиды и палочковидные. К первому принадлежат клеточки, диаметр которых одинаков. Их можно встретить у плодов груши.
Остеосклереиды характеризуются расширенными концами клеток и встречаются, например, у чая. Палочкообразные клеточки характерны для бобовых. Астросклереиды приняли форму звезды и создают уникальный рисунок клеточной структуры. Эти клетки можно найти в листочках камелии.
Склеренхимные волокна имеют вытянутую форму и заострены на концах. Благодаря этому они могут располагаться на минимальном расстоянии друг от друга. Стенки их клеточек равномерно утолщены. Волокна встречаются в любом органе растительного организма. Они могут образовывать группы, составлять кольца либо равномерно распределены по проводящей ткани.
Уже из описания клеток, которые входят в состав механического покрова, можно точно сказать, какую функцию они выполняют. Все типы этой ткани растений предназначены для обеспечения целостности растительного организма. Благодаря особому строению клеток они обладают высокой эластичностью и прочностью.
Bio-Lessons
Образовательный сайт по биологии
Растительные ткани
Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани.
Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм:
группа клеток —> ткань —> орган —> организм
У растений различают 6 видов тканей: образовательную, покровную, основную, опорную, проводящую и выделительную.
Содержание
1.Образовательная ткань
Образовательная ткань находится на верхушке побега и на верхушке корня. Ее клетки плотно прилегают друг к другу. У них тонкие оболочки. За счет деления клеток растения растут.
Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев — функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей.
Со временем клетки утрачивают способность делиться. Они становятся клетками постоянных тканей, таких как покровные, основные, проводящие и др.
2.Покровная ткань
Покровная ткань формируется на поверхности органов. Она представлена кожицей, пробкой и коркой. Защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды.
Клетки кожицы — эпидермис — образуются на всех молодых органах растений. Эпидермис обеспечивает газообмен, испарение, всасывание, предохраняет органы растений от высыхания.
Но для зимующих растений это ненадежная защита. Вместо него перед наступлением зимы образуется пробка. Эта многослойная ткань состоит из мертвых, плотно прилегающих друг к другу клеток. Она защищает растения.
Корка — это наружная часть коры. Как и пробка, она состоит из мертвых клеток и защищает стволы и ветви от излишнего испарения, перегрева, вымерзания, ожога солнечными лучами, объедания животными.
3.Основная ткань
Основная ткань состоит из живых клеток и образует основу всех органов растения.
В зависимости от функции она подразделяется на фотосинтезирующую и запасающую.
Клетки фотосинтезирующей ткани содержат хлоропласты. В них осуществляется фотосинтез. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.
Запасающая ткань плодов, семян, стеблей, луковиц, листьев, корнеплодов, корневищ участвует в накоплении питательных веществ, которые необходимы прежде всего многолетним растениям.
Часть клеток основной ткани служит для запасания воды. Водоносная ткань содержится в основном в стеблях и листьях растений пустынных мест обитания и солончаков, например в стеблях кактусов или листьях алоэ.
Воздухоносная ткань рыхлая. У нее хорошо развиты межклеточные пространства (межклетники), в которые проникает воздух. Особенно хорошо они сформированы у растений, произрастающих в воде (водные и болотные) и на глинистой почве.
По воздухоносным межклетникам кислород доставляется к тем частям растения, связь которых с атмосферой затруднена.
Основная ткань (фотосинтезирующая и запасающая)
4.Опорная или механическая ткань
Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры Она находится в стеблях, листьях и плодах растений. Опорная ткань придает упругость и прочность всем органам растений.
Поэтому при сильном ветре не ломаются хрупкие стебли, не разрываются большие листовые пластинки и листья не срываются с деревьев.
Опорная (механическая) ткань
В мякоти плодов груши, айвы, рябины, в семенах пальмы, в косточках вишни, сливы, абрикоса, персика встречаются каменистые клетки. Они тоже являются опорной тканью.
В органах молодых растений опорная ткань развивается не сразу. Например, косточки незрелых фруктов — сливы, вишни, абрикоса — мягкие, беловатого цвета. По мере созревания плодов их оболочка темнеет и становится твердой.
Семена от повреждений защищает опорная ткань, состоящая сначала из живых клеток. Позже они теряют цитоплазму, стенки утолщаются и древеснеют.
В размещении механической ткани в растительных органах существует особая закономерность. Изучая ее, человек учится у растений создавать прочные, экономичные, радующие глаз здания, башни, мосты, которые к тому же будут естественно вписываться в окружающую среду.
5.Проводящая ткань
Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. Она состоит из двух частей.
Одна часть — ксилема, или древесина, — обеспечивает восходящий поток и доставляет воду и минеральные соли от корней в надземную часть растения.
Клетки древесины представляют собой полые трубки (сосуды) с одеревеневшими мертвыми стенками. В сосудах имеются отверстия, через которые вдоль всего сосуда осуществляется движение жидкости.
Другая часть — флоэма, или луб, — обеспечивает нисходящий поток, т. е. проведение образовавшихся в листьях органических веществ в подземные органы. В состав луба входят ситовидные трубки и клетки-спутницы. Луб и древесина расположены в стебле, корне, жилках листьев.
Проводящие ткани: Ксилема и Флоэма.
Органические вещества, образованные в листьях, доставляются к стеблям, корням, точкам роста, плодам, семенам по ситовидным трубкам. Клетки ситовидных трубок живые.
В поперечных перегородках члеников ситовидных трубок имеется большое количество мелких отверстий, как в сите.
У растений элементы проводящей, опорной и запасающей тканей образуют проводящие, или сосудисто-волокнистые, пучки. Они хорошо видны в листьях в виде жилок, распространены в стебле, корнях и плодах.
Осенью отверстия перегородок ситовидных трубок затягиваются мозолистым веществом, и ток органических веществ по трубке прекращается. Растение впадает в состояние покоя.
Весной мозолистое вещество растворяется, и ток по ситовидным трубкам возобновляется. Проводящая ткань осуществляет связь между корнем и побегом.
6.Выделительная ткань
Известно, что у растений нет специальных выделительных органов, как у животных. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски, нектарники и т. д.
Растения выделяют ароматические и сахаристые вещества, привлекающие насекомых-опылителей. Эфирные масла защищают растения от поедания травоядными животными.
Строение растительной клетки
Увеличительные приборы
Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани. Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм. Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей. Покровная ткань защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды. Основная ткань состоит из живых клеток и образует основу всех органов растения. Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры.
Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. У растений нет специальных выделительных органов. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски.
Биологический русско-английский глоссарий