За что отвечает микропроцессор

Микропроцессор: что нужно знать начинающим электронщикам

Микропроцессор (CPU или Центральный процессор*) – устройство обработки цифровой и аналоговой информации, основная часть аппаратного контроля системы, а заодно и главный инструмент, способный проводить арифметические и логические операции, записанные с использованием машинного кода.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Основных функций у ЦП* несколько – передача данных между оперативной памятью и остальными компонентами ПК, синхронизация информации на внешних и внутренних накопителях, организация многопотоковой и многопрограммной работы в бесперебойном режиме, дешифрация машинного кода, синхронизация чисел разного регистра. И хотя перечисленные функции сложно переводимы на «обывательский язык», запомнить стоит следующее – «Центральный процессор» – важнейший элемент любого персонального компьютера.

И еще на заметку удивительный факт – за все те годы развития микропроцессоров им так и не нашлось никакой альтернативы. Даже современные новинки от Intel, справляющиеся с нагрузкой в тысячу раз быстрее, чем все конкуренты из далекого прошлого, и домашние чипы, обгоняющие по скорости все компьютеры, находившиеся на базе космического корабля «Аполлон», покорившего Луну, так и остаются процессорами с одинаковыми задачами и целями…

Назначение и область применения микропроцессоров

Функционально микропроцессор предназначен для решения следующих задач:

Кроме того, важно понимать, из каких именно частей состоит любой процессор:

История развития: первый микропроцессор

Транзисторы, электромеханические реле, сердечники, вакуумные лампы – первые процессоры, старательно выполнявшие несложные арифметические и логические операции, появились еще в далеком 1940 году, но оставались ненадежными, громоздкими, да и неприменимыми в бытовых условиях (основное назначение – государственные разработки, крупные и набирающие обороты перерабатывающие фирмы) – слишком большое выделение энергии, неконтролируемая теплоотдача, низкая скорость обработки данных. Мечтать о домашнем применении подобных чипов и не приходилось, хотя бы из-за нехватки свободного места. Поставить в какой-нибудь из комнат ЭВМ с микропроцессором получилось бы лишь во дворце.

Со временем все изменилось. В 1970 году Эдвард Хофф, представлявший крупнейший отдел разработки компонентов для электронно-вычислительных машин, представил руководителям компании Intel интегральную схему, выполнявшую те же функции, что и чипы ЭВМ, но с маленьким нюансом – плата Эдварда помещалась в руке, обрабатывала 4 бита информации в секунду (конкуренты выдавали мощности в разы серьезнее – до 32 бит одновременно), и стоила в тысячу раз дешевле.

Первые калькуляторы снабжали именно процессором 4004 Эдварда Хоффа, которые появились в продаже в начале 1971 года. С этого момента, как принято считать, и началась эра новых процессоров, изменивших мир.

Дальше история развития микропроцессоров двинулась следующим путем:

Далее появились поставки многоядерных процессоров, затем появился Xeon и Intel Core, а после на мировом рынке загорелась новая звезда – модульные процессоры AMD. С тех пор (а именно с 2007 года) между двумя компаниями и ведется беспрерывная война за внимание пользователей.

На текущий момент хотя бы примерно описать состояние рынка МП невозможно – Intel Core представляет новые архитектуры микропроцессора (Coffee Lake, Skylake, Haswell, Kaby Lake) чуть ли не каждый год, а заодно меняет наименования семейства процессоров (Intel Core i3, i5, i7, i9). AMD старается удивлять низкими ценами и внушительными возможностями разгона. И кто в таком хаосе лидер – до сих пор не разобрать.

Разновидности микропроцессоров

И современные, и давно известные миру МП легко разделить на четыре части:

Основные характеристики

К основным характеристикам микропроцессора относятся:

Особенности российских микропроцессоров

С 1998 года и по сей день в отечественном сегменте разработкой микропроцессоров занимается компания «МЦСТ». Результаты впечатляющие – стабильное производство RISC систем, внедрение серии Эльбрус в применение на военно-оборонительных комплексах, космических станциях и засекреченных базах для передачи данных с максимальным уровнем шифрования. Заслуги компании «МЦСТ» серьезные, хотя многими обывателями подобные «успехи» кажутся смешными, на фоне мировых гигантов вроде Intel и AMD.

Да, достижения еще не те, но и цели совсем разные, верно? Едва ли «Эльбрус» стоит расценивать, как игровой чип, способный запустить все современные развлечения в максимальном качестве – это, в первую очередь, система для сверхбыстрой обработки данных (прежде всего, военного назначения) в полевых и даже экстремальных условиях.

История развития процессоров из России:

Источник

# факты | Как работает процессор компьютера?

Вы читаете эти строки со смартфона, планшета или компьютера. Любое из этих устройств основано на микропроцессоре. Микропроцессор является «сердцем» любого компьютерного устройства. Существует много типов микропроцессоров, но все они решают одни и те же задачи. Сегодня мы поговорим о том, как процессор работает и какие задачи он выполняет. На первый взгляд все это представляется очевидным. Но очень многим пользователям было бы интересно углубить свои знания о важнейшем компоненте, обеспечивающем работу компьютера. Мы узнаем о том, как технология, основанная на простой цифровой логике, позволяет вашему компьютеру не только решать математические задачи, но и быть развлекательным центром. Как всего две цифры — единица и ноль — преобразуются в красочные игры и фильмы? Этот вопрос многие неоднократно задавали себе и будут рады получить на него ответ. Ведь даже в основе недавно рассмотренного нами процессора AMD Jaguar, на котором базируются новейшие игровые приставки, лежит та же древняя логика.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

В англоязычной литературе микропроцессор часто называют CPU (central processing unit, [единым] модулем центрального процессора). Причина такого названия кроется в том, что современный процессор представляет собою единый чип. Первый микропроцессор в истории человечества был создан корпорацией Intel в далеком 1971 году.

Роль Intel в истории микропроцессорной индустрии

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Первым микропроцессором для домашних компьютеров стал представленный в 1974 году Intel 8080. Вся вычислительная мощность 8-битного компьютера помещалась в одном чипе. Но по-настоящему большое значение имел анонс процессора Intel 8088. Он появился в 1979 году и с 1981 года стал использоваться в первых массовых персональных компьютерах IBM PC.

Далее процессоры начали развиваться и обрастать мощью. Каждый, кто хоть немного знаком с историей микропроцессорной индустрии, помнит, что на смену 8088 пришли 80286. Затем настал черед 80386, за которым следовали 80486. Потом были несколько поколений «Пентиумов»: Pentium, Pentium II, III и Pentium 4. Все это «интеловские» процессоры, основанные на базовой конструкции 8088. Они обладали обратной совместимостью. Это значит, что Pentium 4 мог обработать любой фрагмент кода для 8088, но делал это со скоростью, возросшей примерно в пять тысяч раз. С тех пор прошло не так много лет, но успели смениться еще несколько поколений микропроцессоров.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Существует непосредственная связь между тактовой частотой, а также количеством транзисторов и числом операций, выполняемых процессором за одну секунду. Например, тактовая частота процессора 8088 достигала 5 МГЦ, а производительность: всего 0,33 миллиона операций в секунду. То есть на выполнение одной инструкции требовалось порядка 15 тактов процессора. В 2004 году процессоры уже могли выполнять по две инструкции за один такт. Это улучшение было обеспечено увеличением количества процессоров в чипе.

Чип также называют интегральной микросхемой (или просто микросхемой). Чаще всего это маленькая и тонкая кремниевая пластинка, в которую «впечатаны» транзисторы. Чип, сторона которого достигает двух с половиной сантиметров, может содержать десятки миллионов транзисторов. Простейшие процессоры могут быть квадратиками со стороной всего в несколько миллиметров. И этого размера достаточно для нескольких тысяч транзисторов.

Логика микропроцессора

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Микропроцессор способен выполнять определенный набор машинных инструкций (команд). Оперируя этими командами, процессор выполняет три основные задачи:

Поскольку информация достаточно сложна, будем исходить из того, что ширина обеих шин — и адресной и шины данных — составляет всего 8 бит. И кратко рассмотрим компоненты этого сравнительно простого микропроцессора:

На данной диаграмме не отображены линии управления дешифратора команд, которые можно выразить в виде следующих «приказов»:

В дешифратор команд поступают биты данных из тестового регистра, канала синхронизации, а также из регистра команд. Если максимально упростить описание задач дешифратора инструкций, то можно сказать, что именно этот модуль «подсказывает» процессору, что необходимо сделать в данный момент.

Память микропроцессора

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Выше мы писали о шинах (адресной и данных), а также о каналах чтения (RD) и записи (WR). Эти шины и каналы соединены с памятью: оперативной (ОЗУ, RAM) и постоянным запоминающим устройством (ПЗУ, ROM). В нашем примере рассматривается микропроцессор, ширина каждой из шин которого составляет 8 бит. Это значит, что он способен выполнять адресацию 256 байт (два в восьмой степени). В один момент времени он может считывать из памяти или записывать в нее 8 бит данных. Предположим, что этот простой микропроцессор располагает 128 байтами ПЗУ (начиная с адреса 0) или 128 байтами оперативной памяти (начиная с адреса 128).

Модуль постоянной памяти содержит определенный предварительно установленный постоянный набор байт. Адресная шина запрашивает у ПЗУ определенный байт, который следует передать шине данных. Когда канал чтения (RD) меняет свое состояние, модуль ПЗУ предоставляет запрошенный байт шине данных. То есть в данном случае возможно только чтение данных.

Из оперативной памяти процессор может не только считывать информацию, он способен также записывать в нее данные. В зависимости от того, чтение или запись осуществляется, сигнал поступает либо через канал чтения (RD), либо через канал записи (WR). К сожалению, оперативная память энергозависима. При отключении питания она теряет все размещенные в ней данные. По этой причине компьютеру необходимо энергонезависимое постоянное запоминающее устройство.

Более того, теоретически компьютер может обойтись и вовсе без оперативной памяти. Многие микроконтроллеры позволяют размещать необходимые байты данных непосредственно в чип процессора. Но без ПЗУ обойтись невозможно. В персональных компьютерах ПЗУ называется базовой системой ввода и вывода (БСВВ, BIOS, Basic Input/Output System). Свою работу при запуске микропроцессор начинает с выполнения команд, найденных им в BIOS.

Команды BIOS выполняют тестирование аппаратного обеспечения компьютера, а затем они обращаются к жесткому диску и выбирают загрузочный сектор. Этот загрузочный сектор является отдельной небольшой программой, которую BIOS сначала считывает с диска, а затем размещает в оперативной памяти. После этого микропроцессор начинает выполнять команды расположенного в ОЗУ загрузочного сектора. Программа загрузочного сектора сообщает микропроцессору о том, какие данные (предназначенные для последующего выполнения процессором) следует дополнительно переместить с жесткого диска в оперативную память. Именно так происходит процесс загрузки процессором операционной системы.

Инструкции микропроцессора

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Приведем список слов-команд языка ассемблера для условного простого процессора, который мы рассматриваем в качестве примера к нашему повествованию:

Английские слова, обозначающие выполняемые действия, в скобках приведены неспроста. Так мы можем видеть, что язык ассемблера (как и многие другие языки программирования) основан на английском языке, то есть на привычном средстве общения тех людей, которые создавали цифровые технологии.

Работа микропроцессора на примере вычисления факториала

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

факториал от 5 = 5! = 5 * 4 * 3 * 2 * 1 = 120

На языке программирования C этот фрагмент кода, выполняющего данное вычисление, будет выглядеть следующим образом:

Когда эта программа завершит свою работу, переменная f будет содержать значение факториала от пяти.

Компилятор C транслирует (то есть переводит) этот код в набор инструкций языка ассемблера. В рассматриваемом нами процессоре оперативная память начинается с адреса 128, а постоянная память (которая содержит язык ассемблера) начинается с адреса 0. Следовательно, на языке данного процессора эта программа будет выглядеть так:

// Предположим, что a по адресу 128// Предположим, что F по адресу 1290 CONB 1 // a=1;1 SAVEB 1282 CONB 1 // f=1;3 SAVEB 1294 LOADA 128 // if a > 5 the jump to 175 CONB 56 COM7 JG 178 LOADA 129 // f=f*a;9 LOADB 12810 MUL11 SAVEC 12912 LOADA 128 // a=a+1;13 CONB 114 ADD15 SAVEC 12816 JUMP 4 // loop back to if17 STOP

Теперь возникает следующий вопрос: а как же все эти команды выглядят в постоянной памяти? Каждая из этих инструкций должна быть представлена в виде двоичного числа. Чтобы упростить понимание материала, предположим, что каждая из команд языка ассемблера рассматриваемого нами процессора имеет уникальный номер:

Будем считать эти порядковые номера кодами машинных команд (opcodes). Их еще называют кодами операций. При таком допущении, наша небольшая программа в постоянной памяти будет представлена в таком виде:

// Предположим, что a по адресу 128// Предположим, что F по адресу 129Addr машинная команда/значение0 3 // CONB 11 12 4 // SAVEB 1283 1284 3 // CONB 15 16 4 // SAVEB 1297 1298 1 // LOADA 1289 12810 3 // CONB 511 512 10 // COM13 14 // JG 1714 3115 1 // LOADA 12916 12917 2 // LOADB 12818 12819 8 // MUL20 5 // SAVEC 12921 12922 1 // LOADA 12823 12824 3 // CONB 125 126 6 // ADD27 5 // SAVEC 12828 12829 11 // JUMP 430 831 18 // STOP

Как вы заметили, семь строчек кода на языке C были преобразованы в 18 строчек на языке ассемблера. Они заняли в ПЗУ 32 байта.

Декодирование

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».

Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:

Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.

Микропроцессоры: производительность и тенденции

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Многие транзисторы поддерживают технологию конвейеризации. В рамках конвейерной архитектуры происходит частичное наложение выполняемых инструкций друг на друга. Инструкция может требовать на свое выполнение все тех же пяти циклов, но если процессором одновременно обрабатываются пять команд (на разных этапах завершенности), то в среднем на выполнение одной инструкции потребуется один цикл тактовой частоты процессора.

Во многих современных процессорах дешифратор команд не один. И каждый из них поддерживает конвейеризацию. Это позволяет выполнять более одной инструкции за один такт процессора. Для реализации этой технологии требуется невероятное множество транзисторов.

64-битные процессоры

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Основная причина, по которой процессорам нужна 64-битность, состоит в том, что данная архитектура расширяет адресное пространство. 32-битные процессоры могут получать доступ только к двум или четырем гигабайтам оперативной памяти. Когда-то эти цифры казались гигантскими, но миновали годы и сегодня такой памятью никого уже не удивишь. Несколько лет назад память обычного компьютера составляла 256 или 512 мегабайт. В те времена четырехгигабайтный лимит мешал только серверам и машинам, на которых работают большие базы данных.

Но очень быстро оказалось, что даже обычным пользователям порой не хватает ни двух, ни даже четырех гигабайт оперативной памяти. 64-битных процессоров это досадное ограничение не касается. Доступное им адресное пространство в наши дни кажется бесконечным: два в шестьдесят четвертой степени байт, то есть что-то около миллиарда гигабайт. В обозримом будущем столь гигантской оперативной памяти не предвидится.

64-битная адресная шина, а также широкие и высокоскоростные шины данных соответствующих материнских плат, позволяют 64-битным компьютерам увеличить скорость ввода и вывода данных в процессе взаимодействия с такими устройствами, как жесткий диск и видеокарта. Эти новые возможности значительно увеличивают производительность современных вычислительных машин.

Но далеко не все пользователи ощутят преимущества 64-битной архитектуры. Она необходима, прежде всего, тем, кто занимается редактированием видео и фотографий, а также работает с различными большими картинками. 64-битные компьютеры по достоинству оценены ценителями компьютерных игр. Но те пользователи, которые с помощью компьютера просто общаются в социальных сетях и бродят по веб-просторам да редактируют текстовые файлы никаких преимуществ этих процессоров, скорее всего, просто не почувствуют.

Источник

Как устроен процессор? Разбираемся вместе

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Современного потребителя электроники очень сложно удивить. Мы уже привыкли к тому, что наш карман законно занимает смартфон, в сумке лежит ноутбук, на руке послушно отсчитывают шаги «умные» часы, а слух ласкают наушники с активной системой шумоподавления.

Забавная штука, но мы привыкли носить с собой не один, а сразу два, три и более компьютеров. Ведь именно так можно назвать устройство, у которого есть процессор. И вовсе неважно, как выглядит конкретный девайс. За его работу отвечает миниатюрный чип, преодолевший бурный и стремительный путь развития.

Почему мы подняли тему процессоров? Все просто. За последние десять лет произошла настоящая революция в мире мобильных устройств.

Между этими устройствами всего 10 лет разницы. Но Nokia N95 тогда нам казалась космическим девайсом, а на ARKit сегодня мы смотрим с определенным недоверием

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

А ведь все могло бы сложиться иначе и потрепанный Pentium IV так бы и остался пределом мечтаний рядового покупателя.

Мы постарались обойтись без сложных технических терминов и рассказать, как работает процессор, и выяснить, за какой архитектурой будущее.

1. С чего все началось

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Первые процессоры были абсолютно не похожи на то, что вы можете видеть, приоткрыв крышку системного блока вашего ПК.

Вместо микросхем в 40-е годы XX века использовались электромеханические реле, дополненные вакуумными лампами. Лампы выполняли роль диода, регулировать состояние которого можно было за счет понижения или повышения напряжения в цепи. Выглядели такие конструкции так:

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Для работы одного исполинского компьютера нужны были сотни, иногда тысячи процессоров. Но, при этом, вы не смогли бы запустить на таком компьютере даже простенький редактор, как NotePad или TextEdit из штатного набора Windows и macOS. Компьютеру банально не хватило бы мощности.

2. Появление транзисторов

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Первые полевые транзисторы появились еще в 1928 году. Но мир изменился лишь после появления так называемых биполярных транзисторов, открытых в 1947-м.

В конце 40-х физик-экспериментатор Уолтер Браттейн и теоретик Джон Бардин разработали первый точечный транзистор. В 1950 его заменил первый плоскостной транзистор, а в 1954 году небезызвестный производитель Texas Instruments анонсировал уже кремниевый транзистор.

Но настоящая революция наступила в 1959 году, когда ученый Жан Энри разработал первый кремниевый планарный (плоский) транзистор, который стал основой для монолитных интегральных схем.

Да, это немного сложно, поэтому давайте копнем немного глубже и разберемся с теоретической частью.

3. Как работает транзистор

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Итак, задача такого электрического компонента как транзистор заключается в управлении током. Проще говоря, этот немного хитрый переключатель, контролирует подачу электричества.

Основное преимущество транзистора перед обычным переключателем в том, что он не требует присутствия человека. Т.е. управлять током такой элемент способен самостоятельно. К тому же, он работает намного быстрее, чем вы бы самостоятельно включали или отключали электрическую цепь.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Из школьного курса информатики вы, наверняка, помните, что компьютер «понимает» человеческий язык за счет комбинаций всего двух состояний: «включено» и «выключено». В понимании машины это состояние “0” или “1”.

Задача компьютера заключается в том, чтобы представить электрический ток в виде чисел.

И если раньше задачу переключения состояний выполняли неповоротливые, громоздкие и малоэффективные электрические реле, то теперь эту рутинную работу взял на себя транзистор.

С начала 60-х транзисторы стали изготавливать из кремния, что позволило не только делать процессоры компактнее, но и существенно повысить их надежность.

Но сначала разберемся с диодом

Кремний (он же Si – “silicium” в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы “–” касался p-стороны пластины, а “+” – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Но если подключить питание с достаточным напряжением наоборот, т.е. “+” от источника к p-стороне, а “–” – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.

Диод + диод = транзистор

Сам по себе транзистор можно представить как два, состыкованных друг к другу диода. При этом p-область (та, где размещены дырки) у них становится общей и именуется «базой».

У N-P-N транзистора две n-области с дополнительными электронами – они же «эмиттер» и «коллектор» и одна, слабая область с дырками – p-область, именуемая «базой».

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Если подключить источник питания (назовем его V1) к n-областям транзистора (независимо от полюса), один диод получит обратное смещение и транзистор будет находиться в закрытом состоянии.

Но, как только мы подключим еще один источник питания (назовем его V2), установив “+” контакт на «центральную» p-область (базу), а “–” контакт на n-область (эмиттер), часть электронов потечет по вновь образованной цепи (V2), а часть будет притягиваться положительной n-областью. В результате, электроны потекут в область коллектора, а слабый электрический ток будет усилен.

4. Так как все-таки работает компьютер?

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Как автор данного материала, я хочу сразу извиниться за утомительное объяснение несколькими абзацами выше. Но именно понимание принципа работы транзистора даст вам понимание того, как работает компьютер.

А теперь самое главное.

В зависимости от подаваемого напряжения, транзистор может быть либо открыт, либо закрыт. Если напряжение недостаточное для преодоления потенциального барьера (того самого на стыке p и n пластин) – транзистор будет находится в закрытом состоянии – в состоянии «выключен» или, говоря языком двоичной системы – “0”.
При достаточно напряжении транзистор открывается, а мы получаем значение «включен» или “1” в двоичной системе.
Такое состояние, 0 или 1, в компьютерной индустрии назвали «битом».

Т.е. мы получаем главное свойство того самого переключателя, который открыл человечеству путь к компьютерам!

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

В первом электронном цифровом вычислителе ЭНИАК, а проще говоря – первом компьютере, использовалось около 18 тысяч ламп-триодов. Размер компьютера был сопоставим с теннисным кортом, а его вес составлял 30 тонн.

Для понимания работы процессора нужно понять еще два ключевых момента.

Момент 1. Итак, мы определились с тем, что такое бит. Но с его помощью мы можем лишь получить две характеристики чего-либо: или «да» или «нет». Для того, чтобы компьютер научился понимать нас лучше, придумали комбинацию из 8 битов (0 или 1), которую прозвали байтом.

Используя байт можно закодировать число от нуля до 255. Используя эти 255 чисел – комбинаций нулей и единиц, можно закодировать все что угодно.

Момент 2. Наличие чисел и букв без какой-либо логики нам бы ничего не дало. Именно поэтому появилось понятие логических операторов.

Подключив всего два транзистора определенным образом, можно добиться выполнения сразу нескольких логических действий: «и», «или». Комбинация величины напряжения на каждом транзисторе и тип их подключения позволяет получить разные комбинации нулей и единиц.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Стараниями программистов значения нулей и единиц, двоичной системы, стали переводить в десятичную для того, чтобы мы могли понять, что именно «говорит» компьютер. А для ввода команд привычные нами действия, вроде ввода букв с клавиатуры, представлять в виде двоичной цепи команд.

Проще говоря, представьте, что есть таблица соответствия, скажем, ASCII, в которой каждой букве соответствует комбинация 0 и 1. Вы нажали кнопку на клавиатуре, и в этот момент на процессоре, благодаря программе, транзисторы переключились таким образом, чтобы на экране появилась та самая, написанная на клавише буква.

Это довольно примитивное объяснение принципа работы процессора и компьютера, но именно понимание этого позволяет нам двигаться дальше.

5. И началась транзисторная гонка

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

После того, как в 1952 году британский радиотехник Джеффри Дамер предложил размещать простейшие электронные компоненты в монолитном кристалле полупроводника, компьютерная индустрия сделал семимильный шаг вперед.

От интегральных схем, предложенных Дамером, инженеры быстро перешли на микрочипы, в основе которых использовались транзисторы. В свою очередь, нескольких таких чипов уже образовывали сам процессор.

Разумеется, что размеры таких процессоров мало чем схожи с современными. К тому же, вплоть до 1964 года у всех процессоров была одна проблема. Они требовали индивидуального подхода – свой язык программирования для каждого процессора.

А дальше началась гонка техпроцессов. Задачей чипмейкеров стало в производственных масштабах как можно плотнее разместить транзисторы друг возле друга, добившись уменьшенного технологического процесса.

Казалось бы, продолжать список можно было бы до бесконечности, но тут инженеры Intel столкнулись с серьезной проблемой.

6. Закон Мура или как чипмейкерам жить дальше

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:

Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.

Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.

Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов:

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

В 1991 году выходит 64-битный процессор R4000, работающий на частоте 100 МГц. Через три года появляется процессор R8000, а еще через два года – R10000 с тактовой частотой вплоть до 195 МГц. Параллельно развивался рынок SPARC-процессоров, особенностью архитектуры которых стало отсутствие инструкций умножения и деления.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы. Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур:

В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы. Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.

В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

7. Конец транзисторных соревнований близко

В 2007 году Гордон Мур выступил с весьма резким заявлением:

Закон Мура скоро перестанет действовать. Устанавливать неограниченное количество процессоров до бесконечности невозможно. Причина тому — атомарная природа вещества.

Невооруженным глазом заметно, что два ведущих производителям чипов AMD и Intel последние несколько лет явно замедлили темпы развития процессоров. Точность технологического процесса выросла всего до нескольких нанометров, но размещать еще больше процессоров невозможно.

И пока производители полупроводников грозятся запустить многослойные транзисторы, проводя параллель с 3DNand памятью, у упершейся в стену архитектуры x86 еще 30 лет назад появился серьезный конкурент.

8. Что ждет «обычные» процессоры

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов.

Первый вариант – квантовые компьютеры. Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.

К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!

Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.

Второй вариант – процессоры со слоями транзисторов. О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.

Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.

Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

9. Будущее за ARM

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Итак, архитектура x86 появилась в 1978 году и относится к типу платформы CISC. Т.е. сама по себе она предполагает наличие инструкций на все случаи жизни. Универсальность – главный конек x86.

Но, в тоже время, универсальность сыграла с этими процессорами и злую шутку. У x86 есть несколько ключевых недостатков:

За высокую производительность пришлось попрощаться с энергоэффективностью. Более того, над архитектурой x86 сейчас трудятся две компании, которых можно смело отнести к монополистам. Это Intel и AMD. Производить x86-процессоры могут только они, а значит и правят развитием технологий только они.

В тоже время разработкой ARM (Arcon Risk Machine) занимаются сразу несколько компания. Еще в 1985 году в качестве основы для дальнейшего развития архитектуры разработчики выбрали платформу RISC.

В отличие от CISC, RISC предполагает разработку процессора с минимально необходимым количеством команд, но максимальной оптимизацией. Процессоры RISC намного меньше CISC, более энергоэффективны и просты.

Более того, ARM изначально создавался исключительно как конкурент x86. Разработчики ставили задачу построить архитектуру, более эффективную чем x86.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Еще с 40-х годов инженеры понимали, что одной из приоритетных задач остается работа над уменьшением габаритов компьютеров, а, в первую очередь — самих процессоров. Но вряд ли почти 80 лет назад кто-либо мог предположить, что полноценный компьютер будет меньше спичечного коробка.

Архитектуру ARM в свое время поддержала компания Apple, запустив производство планшетов Newton на базе семейства ARM-процессоров ARM6.

Продажи стационарных компьютеров стремительно падают, в то время как количество ежегодно реализуемых мобильных устройств уже исчисляется миллиардами. Зачастую, помимо производительности, при выборе электронного гаджета пользователя интересуют еще несколько критериев:

x86 архитектура сильна в производительности, но стоит вам отказаться от активного охлаждения, как мощный процессор покажется жалким на фоне архитектуры ARM.

10. Почему ARM – неоспоримый лидер

Вряд ли вы будете удивлены, что ваш смартфон, будь то простенький Android или флагман Apple 2016 года в десятки раз мощнее полноценных компьютеров эпохи конца 90-х.

Но во сколько мощнее тот же айфон?

Само по себе сравнение двух разных архитектур – штука очень сложная. Замеры здесь можно выполнить лишь приблизительно, но понять то колоссальное преимущество, что дает построенные на ARM-архитектуре процессоры смартфона, можно.

Универсальный помощник в таком вопросе – искусственный тест производительности Geekbench. Утилита доступна как на стационарных компьютерах, так и на Android и iOS платформах.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Средний и начальный класс ноутбуков явно отстает от производительности iPhone 7. В топовом сегменте все немного сложнее, но в 2017 году Apple выпускает iPhone X на новом чипе A11 Bionic.

Там, уже знакомая вам архитектура ARM, но показатели в Geekbench выросли почти вдвое. Ноутбуки из «высшего эшелона» напряглись.

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

А ведь прошел всего один год.

Развитие ARM идет семимильными шагами. Пока Intel и AMD год за годом демонстрируют 5 – 10% прирост производительности, за тот же период производители смартфонов умудряются повысить мощность процессоров в два – два с половиной раза.

Скептически настроенным пользователям, которые пройдутся по топовым строчкам Geekbench лишь хочется напомнить: в мобильных технологиях размер – это то, что прежде всего имеет значение.

Установите на стол моноблок с мощным 18-ядерный процессором, который «в клочья разрывает ARM-архитектуру», а затем положите рядом iPhone. Чувствуете разницу?

11. Вместо вывода

За что отвечает микропроцессор. Смотреть фото За что отвечает микропроцессор. Смотреть картинку За что отвечает микропроцессор. Картинка про За что отвечает микропроцессор. Фото За что отвечает микропроцессор

Объять 80-летнюю историю развития компьютеров в одном материале невозможно. Но, прочитав данную статью, вы сможете понять как устроен главный элемент любого компьютера – процессор, и чего стоит ждать от рынка в последующие годы.

Безусловно, Intel и AMD буду работать над дальнейшим наращиванием количества транзисторов на одном кристалле и продвигать идею многослойных элементов.

Но нужна ли вам как покупателю такая мощность?

Вряд ли вас не устраивает производительность iPad Pro или флагманского iPhone X. Не думаю, что вы недовольны производительностью расположившейся на кухне мультиварки или качеством картинки на 65-дюймовом 4K-телевизоре. А ведь во всех этих устройствах используются процессоры на ARM-архитектуре.

Windows уже официально заявила, что с интересом смотрит в сторону ARM. Поддержку этой архитектуры компания включила еще в Windows 8.1, а ныне активно работает над тандемом с ведущим ARM-чипмейкером Qualcomm.

На ARM успела посмотреть и Google – операционная система Chrome OS поддерживает эту архитектуру. Появились сразу несколько дистрибутивов Linux, которые также совместимы с данной архитектурой. И это только начало.

И лишь попробуйте на минутку представить, каким приятным будет сочетание энергоэффективного ARM-процессора с графеновым аккумулятором. Именно эта архитектура позволит получить мобильные эргономичные гаджеты, которые смогут диктовать будущее.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *