За что отвечает нервная ткань

Нервная ткань

Нейрон

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Нейроны обладают 4 свойствами:

Отростки нейронов проводят нервные импульсы и передают их другим нейронам, эффекторам, благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Миелиновая оболочка

В миелиновых нервных волокнах отростки нейронов покрыты миелиновой оболочкой (на 70-75% состоит из липидов (жиров)), которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, то вместе с рукой двигалась бы нога.

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Миелиновый слой представлен несколькими слоями мембраны глиальной клетки (леммоцит, шванновская клетка), которые закручиваются вокруг осевого цилиндра (отростка нейрона). Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше 😉

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Нейроглия (греч. νεῦρον — волокно, нерв + γλία — клей)

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Синапс

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение (нервный импульс) передается другому нейрону. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими 😉 Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Нервы и нервные узлы

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Публикации в СМИ

Нейрогенез во взрослом мозге: влияние стресса и депрессии

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Головной мозг – основной орган, реагирующий на стресс. Эта реакция является комплексным, очень сложным процессом, в котором происходит как активация, так и подавление различных мозговых структур, связанных с формированием памяти, осуществлением двигательных, эмоциональных и когнитивных функций.

Мозг определяет, какие ситуации и события могут оказаться для человека стрессорными, и его ответ на стресс может быть как адаптивным, так и маладаптивным (адекватным либо неадекватным). Хронический стресс приводит к депрессии, которая в свою очередь вызывает повреждения нейронных сетей. Стресс, производимый окружающей средой (стресс на работе, в семье) и в особенности стрессирующие события в жизни, такие как психологические травмы – наиболее распространенные факторы, вызывающие депрессию. Поскольку разработка новых подходов к созданию антидепрессантов и их применению базируется на более глубоком понимании нейробиологических основ этого процесса, необходимо изучение влияния стресса и депрессии на клеточном уровне.

Депрессия является хроническим, рецидивирующим, имеющим множественную этиологию и опасным для здоровья и жизни состоянием, которая представляет из себя набор психологических, нейроэндокринных, физиологических и поведенческих симптомов. Выраженность этих симптомов определяет степень депрессии, которой в те или иные моменты жизни подвергаются до 20% людей во всем мире. Около 20-50% населения земного шара страдают от депрессии, но часто это состояние неверно диагностируют (Wittchen, 2000).

Депрессивные психические расстройства – наиболее распространенное заболевание в мире, провоцирующее серьезные социоэкономические проблемы (WHO, 2001). По прогнозам, к 2015 году депрессия окажется второй после сердечнососудистых заболеваний причиной недееспособности среди европейцев.

Зоны мозга, наиболее сильно страдающие от депрессии – это зоны, отвечающие за формирование эмоций, за процессы обучения и памяти, а именно префронтальная кора, базальные ядра и гиппокамп. Изменения, происходящие в них, включают уменьшение объема структур, размеров нейронов и их плотности, что связано с нарушениями гемодинамики и метаболизма глюкозы. Также снижается количество клеток глии, которые играют ключевую роль в передаче нервного импульса.

Так называемая «стресс-гипотеза» аффективных психических расстройств подтолкнула разработку моделей депрессии на животных. Эти модели стали незаменимы в доклинических исследованиях по психопатологии, патофизиологии депрессии и специфических реакций на антидепрессанты. Открытие того, что в дефинитивной нервной системе продолжаются процессы нейрогенеза, привлекло в свое время большой интерес научного сообщества, так как до этого нейрональные сети взрослого мозга считались неизменными и неспособными к регенерации. Эта аксиома была в 1928 году высказана известным испанским нейрофизиологом Сантъяго Рамоном и Кайялом (Santiago Ramon y Cajal), который в одной из работ написал про нервную ткань: «здесь все может погибнуть, но ничто не способно восстанавливаться» (Cajal, 1928). Современные исследования опровергли этот взгляд, продемонстрировав формирование новых нейронов (нейрогенез) во взрослом мозге. При этом процессы нейрогенеза могут усиливаться позитивными регуляторами и подавляться негативными, такими как острый и хронический стресс.

В то время как стресс ингибирует нейрогенез в гиппокампе, антидепрессанты имеют противоположный эффект. Более того, пациенты с расстройствами эмоциональной сферы в среднем имеют гиппокамп с меньшими средними размерами, чем у здоровых людей. Когда об этом стало известно, это привело к возникновению «нейрогенной гипотезы» депрессии, которая гласит, что нейрогенез в гиппокампе, а точнее его нарушения, могут оказаться первопричиной развития депрессивных расстройств. Однако, согласно сегодняшнему взгляду на эту проблему, нейрогенез в гиппокампе не играет ключевой роли в патогенезе депрессии, хотя и может быть ответственен за некоторые поведенческие эффекты антидепрессантов (Sahay & Hen, 2007).

Также растет количество данных о том, что, помимо воздействия на нейрогенез, стресс и антидепрессанты оказывают влияние на формирование специфических клеток нервной ткани – глии (глиогенез), необходимых для выживания нейронов. Нервная ткань содержит примерно в 100 раз больше глиальных клеток, чем нейронов. Глия выполняет трофическую функцию и принимает участие в регуляции передачи нервных импульсов через синапсы (контакты между отростками нервных клеток). Глиальные клетки также обладают рецепторами к нейротрансмиттерами и стероидным гормонам и способны к генерации электрических импульсов. По этой причине структурные изменения в глиальных клетках могут быть существенны для обмена информацией между нейронами, а также между нейронами и глией.

Во взрослом мозге терапия различными антидепрессантами может стимулировать не только нейрогенез, но и глиогенез. Более того, исследования на животных показали, что хронический стресс подавляет деление клеток не только в гиппокампе, но также и в префронтальной коре, и что этот эффект может быть отменен антидепрессантами (Czeh et al., 2007). Результаты эти были подтверждены исследованиями пациентов с расстройствами эмоций. С помощью компьютерной томографии было показано, что префронтальная кора, несомненно, вовлечена в патофизиологические процессы. В дальнейшем была проведена оценка состояния тканей умерших пациентов, показавшая, что число глиальных клеток в образцах мозга от пациентов, в анамнезе которых была указана тяжелая депрессия, существенно снижено.

В последние два десятилетия представления о мозге сильно изменились. Теперь ясно, что нейрональные и глиальные сети не неизменны, и находятся под контролем множества факторов, таких как факторы внешней среды (например, обучение), и внутренние факторы: нейротрофины, глюкокортикоиды, половые гормоны, и проч. Антидепрессанты стимулируют нейро- и глиогенез, поэтому структурные повреждения, вызванные стрессом и депрессией, не являются необратимыми.

Сегодня считается, что нейрогенез во взрослом мозге ограничен несколькими зонами: гиппокампом и областями, прилегающими к латеральным мозговым желудочкам. Однако появляется все больше данных о том, что образование новых нейронов происходит также в неокортексе. Несмотря на небольшое число этих клеток, они имеют важное значение для функционирования неокортекса. Взаимосвязь психических заболеваний и цитогенеза в дефинитивном неокортексе пока не ясна, но уже ведутся ее доклинические исследования. Возможно, на основе этих работ будут созданы более эффективные подходы к лечению депрессии.

Wittchen HU, Hoefler M, Meister W. Depressionen in der Allgemeinpraxis. Die bundesweite Depressionsstudie. Stuttgart: Schattauer, 2000
Moussavi S, Chatterji S, Verdes E, et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007;370:851-858

World Health Organisation (WHO). The World Health Report 2001. Mental Health: New Understanding, New Hope. Download http://www.who.int/whr/2001/en/whr01_en.pdf

Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nature Neuroscience 2007;10:1110-1115

Ramon y Cajal, SR. Degeneration and regeneration of the nervous system. London, Oxford University Press, 1928

Czeh B, Mueller-Keuker JIH, Rygula R, et al. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 2007;32:1490-1503

Код вставки на сайт

Нейрогенез во взрослом мозге: влияние стресса и депрессии

За что отвечает нервная ткань. Смотреть фото За что отвечает нервная ткань. Смотреть картинку За что отвечает нервная ткань. Картинка про За что отвечает нервная ткань. Фото За что отвечает нервная ткань

Головной мозг – основной орган, реагирующий на стресс. Эта реакция является комплексным, очень сложным процессом, в котором происходит как активация, так и подавление различных мозговых структур, связанных с формированием памяти, осуществлением двигательных, эмоциональных и когнитивных функций.

Мозг определяет, какие ситуации и события могут оказаться для человека стрессорными, и его ответ на стресс может быть как адаптивным, так и маладаптивным (адекватным либо неадекватным). Хронический стресс приводит к депрессии, которая в свою очередь вызывает повреждения нейронных сетей. Стресс, производимый окружающей средой (стресс на работе, в семье) и в особенности стрессирующие события в жизни, такие как психологические травмы – наиболее распространенные факторы, вызывающие депрессию. Поскольку разработка новых подходов к созданию антидепрессантов и их применению базируется на более глубоком понимании нейробиологических основ этого процесса, необходимо изучение влияния стресса и депрессии на клеточном уровне.

Депрессия является хроническим, рецидивирующим, имеющим множественную этиологию и опасным для здоровья и жизни состоянием, которая представляет из себя набор психологических, нейроэндокринных, физиологических и поведенческих симптомов. Выраженность этих симптомов определяет степень депрессии, которой в те или иные моменты жизни подвергаются до 20% людей во всем мире. Около 20-50% населения земного шара страдают от депрессии, но часто это состояние неверно диагностируют (Wittchen, 2000).

Депрессивные психические расстройства – наиболее распространенное заболевание в мире, провоцирующее серьезные социоэкономические проблемы (WHO, 2001). По прогнозам, к 2015 году депрессия окажется второй после сердечнососудистых заболеваний причиной недееспособности среди европейцев.

Зоны мозга, наиболее сильно страдающие от депрессии – это зоны, отвечающие за формирование эмоций, за процессы обучения и памяти, а именно префронтальная кора, базальные ядра и гиппокамп. Изменения, происходящие в них, включают уменьшение объема структур, размеров нейронов и их плотности, что связано с нарушениями гемодинамики и метаболизма глюкозы. Также снижается количество клеток глии, которые играют ключевую роль в передаче нервного импульса.

Так называемая «стресс-гипотеза» аффективных психических расстройств подтолкнула разработку моделей депрессии на животных. Эти модели стали незаменимы в доклинических исследованиях по психопатологии, патофизиологии депрессии и специфических реакций на антидепрессанты. Открытие того, что в дефинитивной нервной системе продолжаются процессы нейрогенеза, привлекло в свое время большой интерес научного сообщества, так как до этого нейрональные сети взрослого мозга считались неизменными и неспособными к регенерации. Эта аксиома была в 1928 году высказана известным испанским нейрофизиологом Сантъяго Рамоном и Кайялом (Santiago Ramon y Cajal), который в одной из работ написал про нервную ткань: «здесь все может погибнуть, но ничто не способно восстанавливаться» (Cajal, 1928). Современные исследования опровергли этот взгляд, продемонстрировав формирование новых нейронов (нейрогенез) во взрослом мозге. При этом процессы нейрогенеза могут усиливаться позитивными регуляторами и подавляться негативными, такими как острый и хронический стресс.

В то время как стресс ингибирует нейрогенез в гиппокампе, антидепрессанты имеют противоположный эффект. Более того, пациенты с расстройствами эмоциональной сферы в среднем имеют гиппокамп с меньшими средними размерами, чем у здоровых людей. Когда об этом стало известно, это привело к возникновению «нейрогенной гипотезы» депрессии, которая гласит, что нейрогенез в гиппокампе, а точнее его нарушения, могут оказаться первопричиной развития депрессивных расстройств. Однако, согласно сегодняшнему взгляду на эту проблему, нейрогенез в гиппокампе не играет ключевой роли в патогенезе депрессии, хотя и может быть ответственен за некоторые поведенческие эффекты антидепрессантов (Sahay & Hen, 2007).

Также растет количество данных о том, что, помимо воздействия на нейрогенез, стресс и антидепрессанты оказывают влияние на формирование специфических клеток нервной ткани – глии (глиогенез), необходимых для выживания нейронов. Нервная ткань содержит примерно в 100 раз больше глиальных клеток, чем нейронов. Глия выполняет трофическую функцию и принимает участие в регуляции передачи нервных импульсов через синапсы (контакты между отростками нервных клеток). Глиальные клетки также обладают рецепторами к нейротрансмиттерами и стероидным гормонам и способны к генерации электрических импульсов. По этой причине структурные изменения в глиальных клетках могут быть существенны для обмена информацией между нейронами, а также между нейронами и глией.

Во взрослом мозге терапия различными антидепрессантами может стимулировать не только нейрогенез, но и глиогенез. Более того, исследования на животных показали, что хронический стресс подавляет деление клеток не только в гиппокампе, но также и в префронтальной коре, и что этот эффект может быть отменен антидепрессантами (Czeh et al., 2007). Результаты эти были подтверждены исследованиями пациентов с расстройствами эмоций. С помощью компьютерной томографии было показано, что префронтальная кора, несомненно, вовлечена в патофизиологические процессы. В дальнейшем была проведена оценка состояния тканей умерших пациентов, показавшая, что число глиальных клеток в образцах мозга от пациентов, в анамнезе которых была указана тяжелая депрессия, существенно снижено.

В последние два десятилетия представления о мозге сильно изменились. Теперь ясно, что нейрональные и глиальные сети не неизменны, и находятся под контролем множества факторов, таких как факторы внешней среды (например, обучение), и внутренние факторы: нейротрофины, глюкокортикоиды, половые гормоны, и проч. Антидепрессанты стимулируют нейро- и глиогенез, поэтому структурные повреждения, вызванные стрессом и депрессией, не являются необратимыми.

Сегодня считается, что нейрогенез во взрослом мозге ограничен несколькими зонами: гиппокампом и областями, прилегающими к латеральным мозговым желудочкам. Однако появляется все больше данных о том, что образование новых нейронов происходит также в неокортексе. Несмотря на небольшое число этих клеток, они имеют важное значение для функционирования неокортекса. Взаимосвязь психических заболеваний и цитогенеза в дефинитивном неокортексе пока не ясна, но уже ведутся ее доклинические исследования. Возможно, на основе этих работ будут созданы более эффективные подходы к лечению депрессии.

Wittchen HU, Hoefler M, Meister W. Depressionen in der Allgemeinpraxis. Die bundesweite Depressionsstudie. Stuttgart: Schattauer, 2000
Moussavi S, Chatterji S, Verdes E, et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007;370:851-858

World Health Organisation (WHO). The World Health Report 2001. Mental Health: New Understanding, New Hope. Download http://www.who.int/whr/2001/en/whr01_en.pdf

Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nature Neuroscience 2007;10:1110-1115

Ramon y Cajal, SR. Degeneration and regeneration of the nervous system. London, Oxford University Press, 1928

Czeh B, Mueller-Keuker JIH, Rygula R, et al. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 2007;32:1490-1503

Источник

Нервная ткань: строение, функции

Содержание:

Нервная ткань — одна из четырех основных тканей многоклеточных животных и человека. Способна возбуждаться и передавать возбуждение посредством электрических импульсов и химических веществ. Нервная ткань обеспечивает наиболее сложную и точную регуляцию функций организма (в отличие от гормонов).

Нейроны: строение, виды и типы

Нервная ткань содержит клетки нервные клетки и нейроглию (рис. 1). Ткань образует головной и спинной мозг, нервные волокна и узлы. Нервная система отвечает за согласованную работу органов и систем органов, обеспечивает связь организма с окружающей средой.

Нейрон — основная, высокоспециализированная клетка нервной ткани. Она осуществляет прием, обработку и передачу информации. Состоит из тела или сомы, в котором заключены ядро с основной массой цитоплазмы, и отростков. Диаметр тела нервной клетки составляет 15–150 мк или 0,001 мм.

Виды нейронов по количеству отростков (рис. 2):

Тела нейронов сконцентрированы, главным образом, в сером веществе головного и спинного мозга. Длинные отростки тянутся на большие расстояния от места, где находятся нервные клетки с ядром. Длина аксона может достигать 1 м и более.

Составные части двигательного (мультиполярного) нейрона (рис. 3):

Типы нейронов в зависимости от выполняемой функции

Основное название

Дополнительные названия

Функции

Проводят информацию об ощущении (импульс) от поверхности тела и внутренних органов в мозг.

Ассоциативные, связывающие, переключающие

Составляют около 99% всех нервных клеток, обрабатывают, анализируют информацию, вырабатывают решения.

Проводят импульс от головного и спинного мозга к исполнительным органам.

Нейроглия

Клетки нейроглии лежат между нейронами и выполняют роль опоры, защиты, питания нервной ткани. Они участвуют в образовании миелиновой оболочки нервных волокон (нервов). Оболочка состоит из шванновских клеток, заполненных жироподобным веществом.

Различают в составе нейроглии астроциты, имеющие звездчатую форму и небольшие размеры. Они имеют многочисленные отростки, входят в состав серого вещества мозга, участвуют в образовании гематоэнцефалического барьера.

Олигодендроциты отвечают за выполнение основных функций нейроглии — опоры, питания, изолирования и регенерации. Микроглия — клетки с 2– отростками, способные к фагоцитозу. Такие клеточные элементы нервной ткани обеспечивают защиту нейронов от чужеродных веществ и тел, удаляют продукты распада.

Нейроглия отличается от нейронов по ряду свойств. Вспомогательные клетки размножаются, но не способны возбуждаться, не образуют и не проводят импульсы. Формирование миелиновых оболочек с помощью шванновских клеток происходит постепенно в первые 3–10 лет жизни.

Свойства нервной ткани

Возбудимость и проводимость — характерные особенности нейронов. Информация передается по отросткам в виде электрических импульсов возбуждения (рис. 4). Это быстрые и кратковременные изменения электрического заряда наружной клеточной мембраны.

Передача информации от нейрона к нейрону происходит в синапсах — местах сближения клеток (нейронов друг с другом или с клетками других тканей). Процесс осуществляется с помощью физиологически активных веществ. Они получили названия «медиаторы» или «нейротрансмиттеры». Медиатор (гистамин, ацетилхолин, дофамин) содержится в специальных пузырьках в окончании аксона.

При возбуждении нейрона импульс достигает окончания аксона. Медиатор выходит из пузырьков и передается через синаптическую щель аксону (дендриту, телу другой нервной клетки или другим клеткам организма). В этих соседних клетках возникает возбуждение или торможение.

Пучки аксонов в изолирующей оболочке образуют нервы. По этим волокнам распространяются нервные импульсы. Передача сигналов происходит только в одном направлении благодаря асимметричной конструкции синапса.

Нервная ткань способна выполнять сложные функции благодаря особому строению нервных клеток и наличию вспомогательных элементов, образующих нейроглию. Основные свойства ткани — раздражимость и возбудимость.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *