За что отвечает техпроцесс

Что такое техпроцесс?

В любом электронном устройстве, которыми мы пользуемся каждый день, есть множество чипов, каждый из которых состоит из еще большего множества транзисторов. В новостях о новых смартфонах, процессорах, видеокартах и прочей электронике можно часто встретить термин «техпроцесс» и указание количества нанометров. Что обозначает этот термин? Давайте разберемся вместе.

Для примера можно взять обычный процессор для настольного компьютера — принцип будет одинаковым и для него, и для чипсетов смартфонов, и для чипов видеокарт, и для всех остальных чипов.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Под теплораспределительной панелью, которую вы видите на картинке выше, размещен сам кристалл процессора. Он состоит из миллиардов микроскопических транзисторов, расстояние между которыми и определяет техпроцесс. Так, Intel сейчас выпускает процессоры на базе 10 нм техпроцесса (компания никак не может наладить производство 7 нм чипов), а TSMC — чипсеты для мобильных девайсов на базе 7 нм техпроцесса (Apple A12, Kirin 980 и Snapdragon 855). При этом технологии производства у них заметно отличаются: Intel со своими 10 нм может размещать на одном квадратном миллиметре площади до 100 млн транзисторов, а TSMC со своими 7 нм — лишь 66 млн.

Что же дает постепенное уменьшение (оптимизация) техпроцесса из года в год? В основе всех преимуществ — уменьшение расстояния между транзисторами, что позволяет им быстрее передавать данные и тратить на их передачу меньше энергии.

Таким образом, процессоры на одинаковой архитектуре, но произведенные с использованием разного техпроцесса, будут отличаться в следующих аспектах:

-тактовая частота (повышение производительности);
-потребление энергии;
-возможное увеличение количества ядер;
-снижение себестоимости производства;
-больше кэш-памяти, для которой на кристалле можно выделить больше места.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Краткая история развития техпроцесса

Компьютерные чипы, которые производили в семидесятых годах прошлого столетия, использовали техпроцессы, измеряемые в микронах (мкм) — 10, 8, 6, 4, 3 и 2 мкм. Каждые три года происходило уменьшение примерно в 0.7 раз. Так, 3 мкм техпроцесс начали использовать в 1975 (Zilog) и 1979 (Intel) годах.

Дальнейшее уменьшение шло довольно быстро: в 1982 году Intel достигла отметки в 1.5 мкм, в 1989 — 0.8 мкм, в 1994 — 0.6 мкм. После середины девяностых и до 2008 года каждые два года плотность транзисторов удваивалась. В 1997 Intel, IBM и TSMC достигли 350 нм, в 1998 инженеры Intel смогли освоить 250 нм, а в 1999 — уже 180 нм.

Ниже 100 нм порог снизился уже в начале «нулевых» — так, Intel Pentium 4 на архитектуре Prescott использовал техпроцесс 90 нм. Уже к 2004 году была достигнута отметка в 65 нм (Intel Core, Core 2 Duo, Celeron D и множество других процессоров), а в 2006 — 40 / 45 нм (AMD Phenom II, Athlon II и другие).

Следующая ступень эволюции была довольно высокой — техпроцесс 32 / 28 нм Intel начала использовать лишь к 2011 (TSMC — чуть раньше, в 2010). Еще раз вдвое (22 / 20 нм) плотность увеличили уже к 2012.

В 2014 году основные игроки на рынке начали использовать в производстве микрочипов 14 / 16 нм техпроцесс и технологию FinFET (транзисторы нового типа — с вертикально расположенным затвором, который занимает еще меньше места). Первые 14 нм процессоры Intel появились в продаже уже в 2015. В 2016 на рынке появились iPhone с чипами Apple A10 (16 нм).

Переход на 10 нм начался в 2017 — этот техпроцесс используют в процессорах Apple A11 Bionic, процессорах Intel Cannon Lake и Ice Lake, а также в Qualcomm Snapdragon 835 и Snapdragon 845.

Наконец, в 2018 году мобильные чипсеты начали использовать новейший 7 нм техпроцесс. Это Apple A12 Bionic, Snapdragon 855 и Huawei HiSilicon Kirin 980. Кроме того, в 2019 7 нм техпроцесс начала использовать AMD (в видеокартах Radeon VII).

Первые образцы чипов, производимых с использованием 5 нм техпроцесса, уже изготавливаются в лабораториях TSMC. О коммерческих продуктах на их основе пока никакой информации нет. При этом к 2021 Samsung уже планирует выпускать чипы с использованием 3 нм техпроцесса и технологии GAAFET.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

AMD Radeon VII — первая потребительская видеокарта, которая использует 7 нм чип

Чего ждать в ближайшие годы? Энтузиасты (а уж инвесторы — в особенности) надеются на то, что Intel наконец-то сможет преодолеть такой сложный для себя порог в 10 нм. Это позволит ей наконец-то начать выпускать и значительно более экономичные и быстрые процессоры для ПК и ноутбуков, и чипсеты нового поколения для мобильных устройств. Сейчас она не может конкурировать на этом рынке с лидерами вроде Apple, Huawei и Qualcomm.

Также 7 нм техпроцесс будут использовать в видеокартах AMD и Nvidia следующих поколений. RTX 21xx должны благодаря этому стать куда быстрее и экономичнее, а AMD в следующем поколении еще и начнет использовать совершенно новую архитектуру Navi. Кстати, свои собственные видеокарты собирается производить и Intel — правда, их выхода ждать придется, скорее всего, как минимум до 2021 года.

В общем и целом, дальнейшая оптимизация техпроцесса должна сделать наши компьютеры, смартфоны, умные часы и другие устройства еще быстрее, а их время автономной работы от батареи должно будет увеличиться (при прочих равных параметрах). Кроме того, конкуренция между разными производителями (Intel, AMD, Huawei, Apple, Qualcomm и другими) и архитектурами (x86 против ARM) должна привести к постепенному снижению цен.

Стоит ли ждать следующего скачка технологий перед покупкой нового смартфона, компьютера или комплектующих? На этот вопрос мы ответим однозначным «нет», которое перестанет быть актуальным разве что перед самым анонсом девайсов нового поколения. Зацикливаться на техпроцессе как технической характеристике не стоит — куда важнее оценить нужную вам производительность и выбрать самый выгодный вариант прямо сейчас.

Источник

Что такое техпроцесс и зачем его уменьшать

Современные смартфоны становятся все более и более многоядерными, производительность увеличивается не по дням, а по часам. Производители соревнуются между собой, хвастаясь техпроцессом, по которому произведен чип. Чем дальше развивается индустрия смартфонов, тем чаще мы слышим про этот загадочный техпроцесс, который то и дело уменьшается. А еще про нанометры, в которых он измеряется. Что это такое, зачем производители его уменьшают? Как уменьшение техпроцесса отражается на долговечности чипов?

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Рассказываем все, что нужно знать о техпроцессе и почему он постоянно уменьшается

Что такое техпроцесс

Производство современных гаджетов основывается на полупроводниковой электронной технике. Для этого используются кристалл кремния — одного из самых распространенных элементов, встречающихся в природе. Этот материал стал важен после того для производства транзисторов, как из производства техники ушли громоздкие ламповые системы, занимающие много места. Процессоры, чипы памяти, контроллеры, различные датчики — для всего этого используется кремний, точнее, кремниевые кристаллы.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Техпроцесс сильно влияет на энергоэффективность устройств

Эта технология используется уже давно и постоянно совершенствуется: меняются только технологии создания чипов. Они уменьшаются и становятся более производительными и энергоэффективными.

В чем измеряется величина техпроцесса

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Нанометр будет сложновато увидеть невооруженным глазом

Например, чем ниже техпроцесс, тем более мощные чипы можно устанавливать даже в самые незамысловатые повседневные гаджеты: умные часы, Bluetooth-наушники. Именно поэтому устройства дольше не разряжаются (во всяком случае, пытаются). В ноутбуках и персональных компьютерах уменьшение техпроцесса помогает упростить систему охлаждения, делая их более компактными. Еще больше познавательных статей ищите в нашем Яндекс.Дзен!

На что влияет техпроцесс

При уменьшении техпроцесса производители получают возможность сделать производительный чип, не потеряв в быстродействии. Не стоит думать, что с уменьшением техпроцесса уменьшается и сам чип — на том же увеличивается количество размещенных ядер процессора — этому способствует более плотное расположение транзисторов по сравнению с предыдущим техпроцессом.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Техпроцесс производства Snapdragon невероятно изменился за 8 лет

Благодаря более энергоэффективным чипам смартфоны стали работать гораздо дольше. Постоянно увеличивать емкость аккумуляторов в смартфонах и планшетах тоже невозможно, поэтому производители работают над тем, чтобы внедрить самые последние техпроцессы в свои разработки. За последние годы разработка чипов улетела в другую галактику: Qualcomm Snapdragon 200, выпущенный в 2013 году, был изготовлен по 45-нанометровой технологии, а последний топовый Snapdragon 888 — уже по 5-нанометровому техпроцессу. Думаю, говорить о разнице в энергоэффективности таких чипов даже не стоит.

Как нас обманывают производители смартфонов

К сожалению, иногда производители используют прогресс в корыстных целях. Точнее, в маркетинговых. Зачастую заявление об очередном уменьшении техпроцесса — настоящий обман. Так однажды техноблогер Roman Hartug провел собственное исследование, сравнив процессоры Intel и AMD. Выяснилось, что различия в архитектуре оказались минимальными и незначительными — 24-нанометровая технология процессора Intel и 22-нанометровая у AMD были схожи, а погрешность незначительна. Безумной разницы в разработках, о которых говорили производители, просто не может быть — это всё маркетинговые уловки, на которые идут компании ради красного словца.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Зачастую уменьшение техпроцесса — обычная маркетинговая уловка

Samsung не раз ловили на обмане пользователей: компания заявляла, что ее 8-нанометровая технология — это доработанная 10-нанометровая. Некоторые всё же стараются не использовать маркетинговые уловки. Например, производительность процессоров AMD Ryzen действительно является плодом упорной работы инженеров над архитектурой. Основной минус этой гонки техпроцессов — однажды производители упрутся в потолок возможностей, придется думать над дальнейшим совершенствованием продукции. Как это будет происходить — покажет лишь время.

Что такое деградация процессора

Убить процессор весьма сложно. Но этому способствует естественная деградация — процесс разрушения внутренних элементов. Под воздействием тока, протекающего через внутренние элементы, и высоких температур характеристики со временем ухудшаются. Проявляется это в частых ошибках, невозможности работы на прежних скоростях. Уменьшение техпроцесса играет в этом определенную роль: с уменьшением внутренней архитектуры увеличивается и плотность «упаковки» элементов, а также плотность электрического тока. Процесс деградации ускоряется при неправильном температурном режиме и повышенном напряжении. Заметили что-то неладное в своем смартфоне? Поможем советом в нашем Telegram-чате!

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Стал чаще зависать смартфон? Возможно, в этом виновата деградация процессора

Деградация процессора — одна из причин, почему смартфоны и другие устройства начинают хуже работать спустя какое-то время. Если присматриваете устройство, но слишком много внимания уделяете цифрам техпроцесса, по которому изготовлен чип, задумайтесь о последствиях. Практика показывает, что чем новее техпроцесс, тем быстрее начинается деградация процессора.

Мы попытались объяснить простым языком нюансы техпроцесса. На самом деле он намного сложнее. Но уменьшение техпроцесса изготовления чипов — нормальное явление. Оно влияет на энергоэффективность и производительность. К сожалению, иногда мы становимся жертвами маркетинговых приемов, переплачивая за то, чего, по сути, нет. К тому же, у уменьшения техпроцесса есть свои минусы, например, более быстрая деградация процессора. В достижениях могут соревноваться производители, но нам, покупателям, пожалуй, в этом не стоит участвовать.

Источник

7 нм против 12: о чем говорит технологический процесс процессора

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

В сентябре 2019 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…

Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.

Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.

Что собой в принципе представляет каждый микропроцессор

Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.

Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.

Какие этапы проходят процессоры во время производства

Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.

1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.

2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.

3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.

4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.

5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.

6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.

7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.

8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.

9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.

10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.

11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.

12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.

13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.

14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Хронология уменьшения размера технологического процесса

Чем меньше нанометров в технологическом процессе, тем:

Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.

Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.

В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2016 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.

Источник

Что такое 10 нм, 7 нм или 5 нм в смартфоне? Техпроцесс для «чайников»

Появление этой статьи на Deep-Review было лишь вопросом времени. Многие читатели задавали одни и те же вопросы, суть которых сводилась к следующему: что реально отражает эта цифра (12, 10, 7 или 5 нм) в технических характеристиках смартфонов, где в процессоре те самые 5 нанометров? Что вообще такое техпроцесс и какой процессор лучше выбрать?

Даже в современных печатных книгах сплошь и рядом встречается распространенное заблуждение, будто эти цифры означают размеры транзисторов, из которых состоит процессор.

В общем, пришло время разобраться с этим вопросом!

Сразу предупреждаю, что статья рассчитана на самый широкий круг читателей, то есть, при желании все сказанное смогут понять даже дети.

Но прежде, чем говорить о нанометрах и техпроцессе, нужно разобраться с транзистором. Без понимания этого устройства весь наш дальнейший разговор будет лишен смысла.

Что такое транзистор в процессоре смартфона? Как он работает и зачем вообще нужен?

Транзистор — это основа любого процессора, памяти и других микросхем. Он представляет собой крошечное устройство, способное работать в двух режимах: усиления или переключения электрического сигнала. Нас интересует именно режим переключателя.

Основа любой вычислительной техники — это единички и нолики. Просмотр видео на смартфоне, прослушивание музыки, дополненная реальность и нейронные сети — все это работает на «единичках и ноликах»:

Именно для получения единиц и нулей мы используем транзисторы. Когда из этого миниатюрного устройства выходит ток, мы говорим, что это единица, когда нет никакого электрического сигнала — получаем ноль.

Соответственно, один транзистор — это совершенно бесполезная ерунда, которая не сможет сделать ничего. Даже, чтобы посчитать 2+2 нам нужны десятки транзисторов.

Итак, для создания транзистора мы берем немножко песка (условно какую-то часть одной песчинки) и делаем из него микроскопическую основу:

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Это будет наша кремниевая подложка (кремний получают именно из песка). Теперь нужно на эту основу нанести две области. Я думал, стоит ли погружаться в физику этого процесса и объяснять, как эти области делаются и что там происходит на уровне электронов, но решил не перегружать статью излишней информацией. Поэтому будем немножко абстрагироваться.

Итак, делаем две области: в одну ток подаем (вход в транзистор), а из другой — считываем (выход):

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Мы сделали эти области внутри кремниевой подложки таким образом, чтобы ток не смог пройти от входа к выходу. Он будет останавливаться самим кремнием (показан зеленым цветом). Чтобы ток смог пройти от входа к выходу по поверхности кремниевой подложки, нужно сверху разместить проводящий материал (скажем, металл) и хорошенько его изолировать:

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

А теперь самое важное! Когда мы подадим напряжение на этот изолированный кусочек металла, размещенный над кремниевой подложкой, он создаст вокруг себя электрическое поле. Изоляция никак не будет влиять на действие этого электрического поля. И здесь происходит вся «магия»: слой кремния под действием этого электрического поля начинает проводить ток от входа к выходу! То есть, когда мы подаем напряжение, ток может легко протекать между двумя областями:

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Вот и все! Осталось дело за малым — подключить «провода» (электроды) ко входу, выходу и кусочку изолированного металла, с помощью которого мы и будем включать/выключать транзистор. Назовем их так:

Для закрепления материала немножко поиграемся с этим транзистором.

Итак, транзистор находится под напряжением, то есть, электричество подается на исток. Но на затворе тока нет, так как на наш транзистор не «пришла единица». Соответственно затвор «закрыл» транзистор и ток по нему пройти дальше не сможет, так что и на выходе из транзистора мы получаем ноль:

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Теперь ситуация изменилась и на затворе транзистора появилось напряжение, которое создало электрическое поле, позволившее току пройти через транзистор от истока к стоку. Как результат — транзистор выдал единицу (есть электрический сигнал):

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Вот так все просто! То есть, основное напряжение поступает на вход ко всем транзисторам, но будет ли каждый конкретный транзистор пропускать этот ток дальше — зависит от незначительного напряжения на затворе. Это напряжение может появляться, например, когда другой транзистор, подключенный к этому, отправил электрический импульс («единичку»).

Этого знания более, чем достаточно для того, чтобы ответить на все остальные вопросы, касательно нанометров и логики работы процессора.

О том, какие физические процессы стоят за таким нехитрым переключателем, то есть, что именно заставляет электроны проходить по кремнию, когда над ним появляется электрическое поле, я рассказывать не буду. Возможно, о легировании кремния фосфором и бором, p-n переходах и электрических полях мы поговорим как-нибудь в другой раз. А сейчас перейдем к основному вопросу.

Что такое техпроцесс или где же спрятаны эти «7 нанометров»?

Предположим, у нас есть современный смартфон, процессор которого выполнен по 7-нм техпроцессу. Что внутри такого процессора имеет размер 7 нанометров? Предлагаю вам выбрать правильный вариант ответа:

Какой бы вариант вы ни выбрали, ваш ответ — неверный, так как ничего из перечисленного не имеет такого размера. Если бы этот же вопрос я задал лет 20 назад, правильным ответом была бы длина затвора (или длина канала, по которому протекает ток от стока к истоку):

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Стоп! Длина канала, ширина, площадь — да какая разница, что в чем измеряется!? Зачем вообще придумали эти названия техпроцессов, для чего они нужны простым людям? Что вообще должен показывать техпроцесс обычному покупателю? Зачем ему знать ту же длину затвора транзистора?

Давным давно один человек по имени Гордон Мур (основатель корпорации Intel) задумался о том, как быстро развиваются технологии. Под словом «развитие» он подразумевал рост количества транзисторов, помещающихся на одной и той же площади. Дело в том, что этот показатель напрямую влияет на скорость вычислений. Процессор, вмещающий всего 1 млн транзисторов будет работать гораздо медленней, чем тот, внутри которого находятся 10 млн транзисторов.

Более того, уменьшая размер транзистора, автоматически снижается его энергопотребление (ток, проходящий через транзистор пропорционален отношению его ширины к длине). Также уменьшается размер затвора и его емкость, позволяя ему переключаться еще быстрее. В общем, одни плюсы!

Так вот, этот человек наблюдал за историей развития вычислительной техники и заметил, что количество транзисторов на кристалле удваивается примерно каждые 2 года. Соответственно, размеры транзисторов уменьшаются на корень из двух раз.

Другими словами, нужно умножать каждую сторону квадратного транзистора на 0.7, чтобы его площадь уменьшилась вдвое:

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Повторюсь, до определенного момента эта цифра означала длину канала (или длину затвора), так как эти элементы уменьшались пропорционально размеру транзистора.

Но затем удалось сокращать длину затвора быстрее, чем другие части транзистора. С тех пор связывать размер затвора с техпроцессом стало не совсем корректно, так как это уже не отражало реального увеличения плотности размещения транзисторов на кристалле.

Например, в 250-нм техпроцессе длина затвора составляла 190 нанометров, но транзисторы не были упакованы настолько плотно по сравнению с предыдущим техпроцессом, чтобы называть его 190-нанометровым (по размеру затвора). Это не отражало бы реальную плотность.

Затем длина канала и вовсе перестала уменьшаться каждые два года, так как появилась новая проблема. При дальнейшем уменьшении длины канала, электроны могли обходить узкий затвор, так как блокирующий эффект был недостаточно сильным. Более того, такие утечки возникали постоянно, вызывая повышенное энергопотребление и нагрев транзистора (и, как следствие, всего процессора).

В общем, техпроцесс отвязали от длины затвора и взяли просто группу из нескольких транзисторов (так называемую ячейку) и площадь этой ячейки использовали для названия техпроцесса.

К примеру, в 100-нм техпроцессе ячейка из 6 транзисторов занимала, скажем, 100 000 нанометров (это условная цифра из головы). Компания упорно работала над уменьшением размеров транзисторов или увеличением плотности их размещения и через пару лет добилась того, что в новом процессоре эта же ячейка занимает уже 50 000 нм.

Не важно, уменьшился ли размер транзисторов или просто удалось упаковать их более плотно (за счет сокращения слоя металла и других ухищрений), можно смело говорить, что количество транзисторов на кристалле выросло в два раза. А значит мы умножаем предыдущий техпроцесс (100 нм) на 0.7 и получаем новенький процессор, выполненный по 70-нм техпроцессу.

Однако, когда мы дошли до 22-нанометрового техпроцесса, уменьшать длину затвора уже было нереально, так как электроны проходили бы сквозь этот затвор и транзисторы постоянно бы пропускали ток.

Решение оказалось простым и гениальным — нужно взять канал, по которому проходит ток и поднять его вверх, над кремниевой основной, чтобы он полностью проходил через затвор:

За что отвечает техпроцесс. Смотреть фото За что отвечает техпроцесс. Смотреть картинку За что отвечает техпроцесс. Картинка про За что отвечает техпроцесс. Фото За что отвечает техпроцесс

Теперь всё пространство, по которому идет ток, управляется затвором, так как полностью им окружено. А раньше, как мы видим, этот затвор находился сверху над каналом и создавал сравнительно слабый блокирующий эффект.

С новой технологией, получившей название FinFET, можно было продолжать уменьшать длину затвора и размещать еще больше транзисторов, так как они стали более узкими (сравните на картинке ширину канала). Но говорить о размерах транзистора стало вообще бессмысленно. Не совсем понятно даже, как эти размеры теперь высчитывать, когда транзистор из плоского превратился в трехмерный.

Таким образом, техпроцесс полностью «оторвался» от каких-либо реальных величин и просто условно обозначает увеличение плотности транзисторов относительно предыдущего техпроцесса.

К примеру, длина канала в 14-нм процессоре от Intel составляет 24 нанометра, а у Samsung — 30 нанометров. Отличаются и другие метрики этих процессоров, сделанных, казалось бы, по одинаковому техпроцессу. Более того, длина затвора — не самая миниатюрная часть транзистора. В том же 14-нм процессоре ширина канала вообще состоит из нескольких атомов и составляет 8 нанометров! То есть, техпроцесс — это даже не описание самой маленькой части транзистора.

Другими словами, нанометровый техпроцесс не описывает размеры транзисторов. Сегодня это условная цифра, означающая плотность размещения транзисторов или увеличение количества транзисторов относительно предыдущего техпроцесса (что напрямую влияет на быстродействие процессора).

В любом случае, важно запомнить простое правило и пользоваться им при анализе характеристик смартфона:

Разница техпроцесса в 0.7 раз означает двукратное увеличение количества транзисторов

Для примера можем посмотреть на последние чипы от Apple. В 10-нм процессоре Apple A11 Bionic содержится 4.3 млрд транзисторов, а в 7-нм Apple A13 Bionic — 8.5 млрд транзисторов. То есть, видим, что техпроцесс отличается в 0.7 раз, а количество транзисторов — в 2 раза. Соответственно, 7-нм процессор гораздо производительней 10-нанометрового.

Продолжая аналогию, в 5-нм процессоре должно вмещаться в 2 раза больше транзисторов, чем в 7-нанометровом! Если вас не очень удивляет этот факт, обязательно почитайте на досуге мою заметку об экспоненциальном развитии технологий.

Итак, когда вы будете смотреть на два смартфона с 14-нм и 10-нм процессорами, то знайте что в последнем гораздо больше транзисторов, соответственно, его вычислительная мощность заметно выше. Так и следует пользоваться «техпроцессом» при выборе смартфона.

А если вам интересно, как эти бездушные транзисторы умеют «думать», делать сложные вычисления, показывать фильмы или проигрывать музыку, тогда ответы на эти вопросы читайте в нашем новом материале!

Алексей, глав. редактор Deep-Review

P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!

Как бы вы оценили эту статью?

Нажмите на звездочку для оценки

Внизу страницы есть комментарии.

Напишите свое мнение там, чтобы его увидели все читатели!

Если Вы хотите только поставить оценку, укажите, что именно не так?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *