За что отвечает угловой коэффициент линейной функции

Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Уравнение с угловым коэффициентом

Ответ: М 1 принадлежит прямой, а М 2 нет.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Решение

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

Решим задачу обратную данной.

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

Источник

График линейной функции, его свойства и формулы

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Источник

Угловой коэффициент.

Угловой коэффициент— коэффициент k в уравнении прямой на плоскости y = kx + b. Он численно равняется тангенсу угла между выбранной прямой и осью 0х. Этот угол отсчитывается от положительного направления оси до прямой против хода часовой стрелки и располагается и пределах от 0 до 180 градусов.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Для обозначения углового коэффициента употребляют латинский символ k. И, основываясь на определении получаем:

Когда прямая параллельна оси 0х или совпадает с ней, то угол ее наклона расценивают, как равный нулю.

Когда прямая параллельна оси 0у, то угловой коэффициент отсутствует и принято указывать, что угловой коэффициент обращается в бесконечность.

Положительный угловой коэффициент прямой свидетельствует о росте графика функции, отрицательный угловой коэффициент – об убывании.

Угловой коэффициент прямой так же есть возможность вычислить, когда установлены координаты двух произвольных точек прямой:

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Тогда, в образовавшемся прямоугольном треугольнике M1РM2 вычисляем тангенс:

Источник

Линейная функция (ЕГЭ 2022)

Зависимость одной величины от другой математики называют функций одной величины от другой.

Количество денег — это функция вашей зарплаты (иногда говорят «от зарплаты»).

Вес — это функция от съеденных круассанов. Чем меньше съел, тем меньше весишь.

Расстояние — это функция времени. Чем дольше ты будешь идти, тем больше пройдешь.

Ну а теперь перейдем к одному из видов функций – линейной функции.

Линейная функция — коротко о главном

Линейная функция –это функция вида \( y=kx+b\), где \( k\) и \( b\) ­– любые числа (коэффициенты).

Рассмотрим, как коэффициенты влияют на месторасположение графика:

Общие варианты представлены на рисунке:

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Линейная функция

Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: деньги – зарплата, вес – круассаны, расстояние – время.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).

Что значит «допустимому»?

Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» — не все можно подставить в зависимость.

Например, для функции \( y=\sqrt\) отрицательные значения аргумента \( x\) – недопустимы.

Ну и вернемся, наконец, к теме данной статьи.

Линейной называется функция вида \( y=kx+b\), где \( k\) и \( b\) ­– любые числа (они называются коэффициентами).

Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.

Как думаешь, почему она называется линейной?

Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений \( E\left( y \right)\).

Область определения линейной функции

Какими могут быть значения аргумента линейной функции \( y=kx+b\)? Правильно, любыми. Это значит, что область определения – все действительные числа:

\( D\left( y \right)=\mathbb\)

А множество значений?

Область значений линейной функции

Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент \( x\), тем больше значение функции \( y\).

Значит, \( y\) так же как и \( x\) может принимать все возможные значения, то есть \( E\left( y \right)=\mathbb\), верно?

Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?

Вспомним формулу: \( y=kx+b\). Какие нужно выбрать коэффициенты \( k\) и \( b\), чтобы значение функции y не зависело от аргумента \( x\)?

А вот какие: \( b\) – любое, но \( k=0\). И правда, каким бы ни был аргумент \( x\), при умножении на \( k=0\) получится \( 0\)!

Тогда функция станет равна \( y=0\cdot x+b=b\), то есть она принимает одно и то же значение при всех \( x\):

\( y = kx + b:<\rm< >>\left[ \beginE\left( y \right) = \mathbb<\rm< при >>k \ne 0\\E\left( y \right) = \left\< b \right\><\rm< при >>k = 0.\end \right.\)

Теперь рассмотрим несколько задач на линейную функцию.

Три задачи на линейную функцию

Решение задачи №1

Пусть начальное значение аргумента равно некому числу \( <_<1>>\). После увеличения на \( 2\) аргумент стал равен: \( <_<2>>=<_<1>>+2\).

Чему была равна функция до увеличения? Подставляем аргумент в формулу:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Решение задачи №2

Аналогично предыдущей задаче:

Начальное значение аргумента равно \( <_<1>>\), конечное – \( <_<2>>=<_<1>>+1\).

Начальное значение функции: \( <_<1>>=k<_<1>>+b\);

В этот раз функция не увеличилась, а уменьшилась. Это значит, что конечное значение будет меньше начального, а значит, изменение (разность конечного и начального) будет отрицательным:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Определение прямой пропорциональной зависимости

Если проанализировать решения этих двух задач, можно прийти к важному выводу.

При изменении аргумента линейной функции на \( \Delta x\) функция изменяется на \( k\cdot \Delta x\). То есть изменение функции всегда ровно в \( \mathbf\) раз больше изменения аргумента.

По сути это является определением прямой пропорциональной зависимости.

Решение задачи №3

Подставим известные значения аргумента и функции в формулу \( y=kx+b\):

Получили два уравнения относительно \( k\) и \( b\). Теперь достаточно решить систему этих двух уравнений:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

График линейной функции

Как я уже упоминал ранее, график такой функции – прямая линия.

Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).

Предположим, у нас есть функция линейная функция \( y=2x+1\). Чтобы построить ее график, нужно вычислить координаты любых двух точек.

То есть нужно взять любые два значения аргумента \( x\) и вычислить соответствующие два значения функции.

Затем для каждой пары \( \left( x;y \right)\) найдем точку в системе координат, и проведем прямую через эти две точки.

Проще всего найти функцию, если аргумент \( x=0:y\left( 0 \right)=2\cdot 0+1=1\).

Итак, первая точка имеет координаты \( \left( 0;1 \right)\).

Теперь возьмем любое другое число в качестве \( x\), например, \( x=1:y\left( 1 \right)=2\cdot 1+1=3\).

Вторая точка имеет координаты \( \left( 1;3 \right)\).

Ставим эти две точки на координатной плоскости:

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Теперь прикладываем линейку, и проводим прямую через эти две точки:

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Вот и все, график построен!

Давай теперь на этом же рисунке построим еще два графика: \( y= -1\) и \( y=-x+2\).

Построй их самостоятельно так же: посчитай значение y для любых двух значений \( x\), отметь эти точки на рисунке и проведи через них прямую.

Должно получиться так:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Видно, что все три прямые по-разному наклонены и в разных точках пересекают координатные оси. Все дело тут в коэффициентах \( \displaystyle k\) и \( \displaystyle b\).

Давай разберемся, на что они влияют.

Коэффициенты линейной функции

Для начала выясним, что делает коэффициент \( \displaystyle b\). Рассмотрим функцию \( \displaystyle y=x+b\), то есть \( \displaystyle k=1\).

Меняя \( \displaystyle b\) будем следить, что происходит с графиком.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Что ты можешь сказать о них? Чем отличаются графики?

Это сразу видно: чем больше \( \displaystyle b\), тем выше располагается прямая.

Более того, заметь такую вещь: график пересекает ось \( \displaystyle \mathbf\) в точке с координатой, равной \( \displaystyle \mathbf\)!

И правда. Как найти точку пересечения графика с осью \( \displaystyle y\)? Чему равен \( \displaystyle x\) в такой точке?

В любой точке оси ординат (это название оси \( \displaystyle y\), если ты забыл) \( \displaystyle x=0\).

Значит достаточно подставить \( \displaystyle x=0\) в функцию, и получим ординату пересечения графика с осью \( \displaystyle y\):

\( \displaystyle y=k\cdot 0+b=b\)

Теперь по поводу \( \displaystyle k\). Рассмотрим функцию \( \displaystyle \left( b=0 \right).\) Будем менять \( \displaystyle k\) и смотреть, что происходит с графиком.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Так, теперь ясно: \( \displaystyle k\) влияет на наклон графика.

Чем больше \( \displaystyle k\) по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс – \( \displaystyle Ox\)) расположена прямая.

Если \( \displaystyle k>0\), график наклонен «вправо», при \( \displaystyle k За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Выберем на графике две точки \( \displaystyle A\) и \( \displaystyle B\). Для простоты выберем точку \( \displaystyle A\) на пересечении графика с осью ординат. Точка \( \displaystyle B\) – в произвольном месте прямой, пусть ее координаты равны \( \displaystyle \left( x;y \right)\).

Рассмотрим прямоугольный треугольник \( \displaystyle ABC\), построенный на отрезке \( \displaystyle AB\) как на гипотенузе.

Из рисунка видно, что \( \displaystyle AC=x\), \( \displaystyle BC=y-b\).

Подставим \( \displaystyle y=kx+b\) в \( \displaystyle BC:BC=y-b=kx+b-b=kx\).

Получается, что \( BC = k \cdot AC<\rm< >> \Rightarrow <\rm< >>k = \frac<><> = <\mathop<\rm tg>\nolimits> \alpha \).

Итак, коэффициент \( \displaystyle k\) равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс.

Именно поэтому его (коэффициент \( \displaystyle k\)) обычно называют угловым коэффициентом.

В случае, когда \( k За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Если же \( \displaystyle k=0\), тогда и \( <\mathop<\rm tg>\nolimits> \alpha = 0,\) следовательно \( \displaystyle \alpha =0\), то есть прямая параллельна оси абсцисс.

Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.

Разбор еще трех задач на линейную функцию

1. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

2. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

3. График какой из функций изображен на рисунке?

За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

Решение задачи №1

Коэффициент \( b\) найти проще простого – это ведь точка пересечения графика с осью \( \displaystyle Oy\):

Угловой коэффициент \( \displaystyle k\) – это тангенс угла наклона прямой.

Для его нахождения выберем две точки \( \displaystyle A\) и \( \displaystyle B\) на графике и построим прямоугольный треугольник с гипотенузой \( \displaystyle AB\):

Источник

Линейная функция ее свойства и график. Угловой коэффициент линейной функции

Линейная функция

Линейная функция – это функция вида:

здесь k и b являются действительными числами.

Свойства линейной функции

Линейная функция имеет следующие свойства:

Угловой коэффициент линейной функции

Коэффициент k в формуле линейной функции называется угловым коэффициентом.

Угловой коэффициент определяет угол между графиком линейной функции и положительным направлением оси абсцисс.

График линейной функции

График линейной функции есть прямая. Вот график линейной функции y = 2x + 1 За что отвечает угловой коэффициент линейной функции. Смотреть фото За что отвечает угловой коэффициент линейной функции. Смотреть картинку За что отвечает угловой коэффициент линейной функции. Картинка про За что отвечает угловой коэффициент линейной функции. Фото За что отвечает угловой коэффициент линейной функции

здесь угловой коэффициент больше нуля, угол прямой линии y = 2x + 1 с положительным направлением оси x – острый.

Как изменяется график линейной функции в зависимости от числа b в формуле линейной функции y = kx + b? Если b увеличивать, график смещается вверх, если число b уменьшать, то график y = kx + b смещается вниз.

График линейной функции y = kx + b построить вы можете сами прямо сейчас с помощью построителя графиков. Выберете в нём вид функции «Линейная: y = k * x + b» и нажмите кнопку «Построить график». Проведите эксперименты: устанавливайте угловые коэффициенты больше и меньше нуля, меняйте значения числа b и посмотрите, как будет изменяться график линейной функции.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *