За что отвечают легкие в организме
Легкие человека: строение, расположение, функции
Дыхание – это процесс, без которого человек не может существовать. Знать, где у человека находятся легкие, как они функционируют и какое строение имеют, должен каждый, кто следит за своим здоровьем. Орган относится к жизненно важным, так как с его помощью весь организм обеспечивается кислородом.
Легкие человека: краткая характеристика органа
От работы дыхательной системы напрямую зависит функционирование мозга, выделение энергии, с помощью кислорода происходит расщепление полезных веществ. Органы дыхания включают нос, рот, гортань, трахею, бронхи, входящие в состав легких.
Легкое – это один из парных, самый объемный орган человека. В здоровом состоянии он розово-красного цвета, структура – мягкая, губчатая.
Объем органа в среднем составляет 3 литра, но для вдыхания и выдыхания достаточно 450-500 мл. У лиц, активно занимающихся плаванием, объем легких достигает 5 литров.
Для глубокого вдоха используется около двух литров атмосферного воздуха. При таких особенностях дыхания в органе остается запас, благодаря которому в альвеолах поддерживается уровень кислорода на необходимом уровне.
В тканях каждого легкого постоянно перемещается венозная и артериальная кровь, присутствуют лимфатические сосуды. В нем также имеются нервные клетки, тесно связанные с сосудами и бронхами.
В первый месяц беременности у плода уже формируются зачатки главного органа респираторной системы, а к пятому месяцу обозначаются его составные элементы. Орган продолжает рост до 25 лет, так как растущий организм постоянно нуждается в кислороде.
Расположение легких
Легкие располагаются посередине грудной клетки. Их защищает и поддерживает каркас из ребер, по 12 слева и справа. Со стороны спины органы защищаются позвоночным столбом.
Для обеспечения возможности дышать между ребрами присутствует мышечная ткань, к грудине кости фиксируются хрящами. Со стороны спины легкие располагаются на 2-3 см выше ключиц.
Снизу орган граничит с диафрагмой, разграничивающей брюшину и грудную клетку. С правой стороны под легким расположена печень. С левой стороны сверху примыкает сердце, а снизу – частично желудок. Точное расположение легких у человека наглядно можно посмотреть на фото.
Какое строение имеют легкие человека
Органы по форме похожи на полуконусы, но не являются идентичными по форме и размеру. Легкое, расположенное справа, покороче и пошире левого, а также более крупное. Это объясняется тем, что справа расположена печень. В легком, расположенном слева, имеется врезка для прилегания сердца. Орган, расположенный справа имеет три доли: нижнюю, среднюю и верхнюю. Левое имеет только две доли: верхнюю и нижнюю. Каждая доля имеет сегменты, которые снабжаются крупным кровеносным и дыхательным сосудом.
В каждом легком имеется:
корень, состоящий из вены, легочной артерии и крупного бронха;
входные ворота, то есть небольшие углубления, через которые корень проходит в легкое и разветвляется на более мелкие сосудики и бронхи.
Сегменты бронхов и сосудов отделяются слоями соединительной ткани и имеют форму пирамид. При изучении строения легких человека важно понимать, что орган имеет три основных структурных элемента, от которых зависит возможность выполнения дыхательной функции. Это:
Альвеолы. Это легочные пузырьки, предназначение которых – газообмен. Имеют тонкие стенки и микроскопический размер. Изнутри альвеолы выстланы сурфакантом, который препятствует слипанию оболочек. При дыхании через них молекулы кислорода проникает в кровь, а затем с эритроцитами разносится по кровеносной системе ко всем органам.
Бронхиолы. Формируются на концах бронхиальных ответвлений. Различают дыхательные и концевые. На их концах находятся ацинусы (наименьшие части бронхиального дерева).
Каждое легкое снаружи защищено плеврой. Это особая двухслойная оболочка, пролегающая между тканью легкого и грудиной. В плевре находится биологическая жидкость.
Также в структуре присутствует строма – это внутренний каркас органов, тонкая соединительная ткань, которая делит легкие на дольки. Внутри стромы располагаются кровеносные и лимфатические сосуды, нервные волокна, пути входа/выхода воздуха.
Функции легких
Самая важная функция легких – это газообмен, то есть поставка кислорода в кровь и вывод из организма углекислого газа. Процесс обеспечивается ритмичными движениями диафрагмы и грудной клетки, а также способностью легких сокращаться.
Без работы легких по выведению углекислоты невозможна поддержка кислотно-щелочного баланса. Через главный орган дыхания происходит эвакуация ацетона, ароматических веществ, аммиака и эфира.
Парный орган активно участвует в терморегуляции. При выдохе в окружающую среду отдается около 10% тепла.
Легкие принимают участие в регулировании водного баланса в организме. Через них каждые сутки испаряется около 0,5 л воды.
Также орган принимает участие в очищении крови, вступающей в реакцию с воздухом: молекулы кислорода заменяют молекулы углекислого газа.
Еще одна важнейшая функция – амортизация сердца и его защита от повреждений при ударах. Также орган выделяет особое вещество, препятствующее проникновению бактерий и вирусов. При разговоре обеспечивает поступление воздуха в организм, а также способны хранить запасы крови.
Таким образом, легкие нуждаются в бережном к ним отношении. Курение, работа в пыльных помещениях или на вредных производствах существенно ухудшают их состояние. Болезни органов дыхания – самые часто встречаемые в мире. Важно своевременно лечить инфекции, при работе едкими веществами использовать СИЗы, больше находиться на свежем воздухе и регулярно проходить флюорографию.
Все представленные на сайте материалы предназначены исключительно для образовательных целей и не предназначены для медицинских консультаций, диагностики или лечения. Администрация сайта, редакторы и авторы статей не несут ответственности за любые последствия и убытки, которые могут возникнуть при использовании материалов сайта.
За что отвечают легкие кроме дыхания?
Долгое время считалось, что роль легких ограничивается только дыхательной функцией. Сегодня уже известно, что спектр «обязанностей» этих важнейших органов чрезвычайно широк
Связь с внешним миром
Легкие обеспечивают связь между окружающей средой и организмом. Здесь осуществляется газообмен между воздухом, находящимся в альвеолах, и кровью, протекающей по легочным капиллярам. Полная емкость легких составляет приблизительно 5000 мл, а после спокойного выдоха в них остается примерно 3000 мл. Максимально глубокий вдох составляет около 2000 мл, а обычный — 400–500 мл. Эти показатели значительно варьируют у разных индивидов.
При вдохе давление в легких ниже атмосферного, а при выдохе — выше, что дает возможность воздуху проникать извне. Рецепторы, с помощью которых происходит регуляция дыхания, располагаются в крупных артериях — в области дуги аорты и общей сонной артерии. Хеморецепторы реагируют на концентрацию углерода диоксида и, в меньшей степени, кислорода.
На стенках бронхов расположены барорецепторы, реагирующие на давление. Дыхание регулируется скоплениями нервных клеток в стволе головного мозга (продолговатый мозг и мост). Легкие — органы воздушного дыхания у человека, обеспечивающие кислородом все органы и ткани.
Розовые, как в детстве
У детей ткань легких бледно-розового цвета, а у взрослых она постепенно темнеет за счет вдыхаемых частиц пыли, которые откладываются в соединительной ткани. Следует обратить внимание, что, в отличие от большинства других частей организма, вены легких несут красную, обогащенную кислородом кровь, а артерии — темную кровь, насыщенную углекислотой. Легкие обильно снабжены нервами и лимфатическими сосудами. Венозная кровь из вен печени присоединяется к нижней полой вене около правой половины сердца, принося печеночные метаболиты непосредственно к легким. Вместе с кровью сюда поступает множество метаболически активных веществ и не менее значимый объем таких соединений выделяется легкими.
Помимо своей основной функции газообмена, легкие играют большую роль в защите организма
Альвеолы
Воздух доставляется через трахеобронхиальное дерево, начинающееся с трахеи и далее разветвляющееся на главные, долевые, сегментарные и дольковые бронхи, концевые бронхиолы, альвеолярные бронхиолы и альвеолярные ходы. Только около 2⁄3 дыхательного объема достигает альвеол. Они состоят из соединительной ткани и эластичных волокон, выстланы тонким прозрачным эпителием и оплетены сетью кровеносных капилляров.
В альвеолах происходит газообмен между кровью и атмосферным воздухом. При этом кислород и углекислый газ проходят в процессе диффузии путь от эритроцита крови до альвеолы. Общая площадь внутренней поверхности альвеол меняется между выдохом и вдохом от 40 до 120 м².
Сурфактантная система легких
При выдохе алвеолы легких не слипаются благодаря сурфактанту, который регулирует поверхностное натяжение альвеолярного слоя. Его основу составляют фосфолипиды, холестерол, белки и другие вещества. Кроме расправления альвеол, сурфактант выполняет бактерицидную и иммуномодулирующую функцию, а также стимулирует активность альвеолярных макрофагов. Он формирует противоотечный барьер, который предупреждает проникновение жидкости в просвет альвеол из интерстиция.
Сурфактант помогает легким всасывать и усваивать кислород. Это вещество секретируется из компонентов плазмы крови, а при его недостатке развивается отек и происходит ателектазирование легких.
Сурфактантная система легких не развита у недоношенных детей и может нарушаться у взрослых при ряде критических состояний вследствие тяжких травм, воспалительных процессов и др. (т.н. острый респираторный дистресс-синдром).
Недыхательные функции легких
Помимо своей основной функции газообмена, легкие играют большую роль в защите организма. Они обеспечивают очистку воздуха и крови от вредных примесей, осуществляют детоксикацию, ингибирование и депонирование многих биологически активных веществ.
Легкие участвуют во всех видах обмена, регулируют водный баланс, синтезируют поверхностно-активные вещества, а также являются своеобразным воздушным и биологическим фильтром. Они изменяют pH крови, облегчая изменения в парциальном давлении углекислого газа. Легкие служат резервуаром крови в организме.
Объем крови в легких составляет приблизительно 450 мл, что в среднем занимает около 9% общего объема крови всей системы кровообращения. Это количество легко может изменяться в два раза в ту или иную сторону от нормального объема. Потеря крови из большого круга кровообращения при кровотечении может быть частично компенсирована выбросом крови из легких в кровеносную систему.
Легкие служат для амортизации сердца, предохраняя его от ударов, обеспечивают воздушный поток для создания звуков голоса. Кроме того, они выполняют фибринолитическую и антикоагулянтную, кондиционирующую и выделительную функции.
Обмен жидкости и тепла
В легких происходит не только газообмен, но и обмен жидкости. Известно, что из легких за сутки выделяется в среднем около 400–500 мл жидкости. При гипергидратации и повышенной температуре тела эти потери возрастают.
Легочные альвеолы играют роль своеобразного коллоидно-осмотического барьера, и при снижении давления плазмы жидкость может выходить из сосудистого русла, приводя к отеку легких. Эпителий легких снабжен большим количеством рецепторов и мембранных белков, играющих важную роль в абсорбции жидкости из легких после родов, травмы легких или воспалительных заболеваний этого органа.
Легкие выполняют теплообменную функцию, являются своеобразным кондиционером, увлажняющим и согревающим дыхательную смесь. Терморегуляция осуществляется за счет испарения воды с поверхности альвеол в выдыхаемый воздух. Тепловое и жидкостное кондиционирование воздуха осуществляется не только в верхних дыхательных путях, но доходит до дистальных бронхов.
Система защиты
В системе защиты, осуществляемой легкими, выделяют несколько звеньев: мукоцилиарное, клеточное и гуморальное. Вдыхаемый воздух очищается в дыхательных путях и альвеолах от всевозможных примесей физической, химической и биологической природы.
Обезвреживание и удаление повреждающих агентов из дыхательных путей обеспечивается мукоцилиарной системой: реснитчатым эпителием, покрывающим слизистую оболочку дыхательных путей, а также слизистыми и серозными железами.
Мерцательный эпителий бронхов является важной системой защиты от инфекций, передающихся воздушно-капельным путем. Частицы пыли и бактерии во вдыхаемом воздухе попадают в слизистый слой и перемещаются вверх к глотке с помощью мерцательных движений ресничек. Слизь бронхов содержит гликопротеины, обладающие антимикробным действием, такие, как муцин, лактоферрин, лизоцим, лактопероксидаза. Важнейшим механизмом самоочищения служит кашлевой рефлекс, обеспечивающий механическое удаление путем откашливания лишних примесей и мокроты.
Очистка воздуха на уровне альвеол осуществляется с помощью альвеолярных макрофагов, которые вступают в контакт с веществами воздуха и крови, не только фагоцитируя их, но и модулируя многие иммунные процессы и участвуя в воспалительных реакциях.
Среди факторов гуморального звена легких большое значение имеют иммуноглобулины IgA, IgG, IgE, IgM. Они нейтрализуют токсины и вирусы, воздействуют на микроорганизмы и повышают эффективность мукоцилиарного транспорта.
Очистка крови и детоксикация
В отличие от артериальной, притекающая в легкие венозная кровь содержит частицы, состоящие из конгломератов клеток, фибрина, микроэмболов жира и эритроцитных взвесей. Эти вещества в избытке поступают из разрушенных тканей при травме, операции или шоке.
В легких происходит механическая задержка частиц, не проходящих через легочные капилляры. Эти частицы подвергаются метаболизму при помощи различных ферментных систем. Наиболее важной является смешанная оксидазная система, которая посредством гидроксилирования превращает вредные, нерастворимые в липидах вещества в неактивные — водорастворимые.
При избыточном поступлении продуктов белкового распада и жиров в легких происходят их расщепление и гидролиз. При прохождении через легкие из кровотока исчезают аденилнуклеотиды, образующиеся при синдроме раздавливания. Детоксикационным системам легких принадлежит особо важная роль при токсемии: септическом, ожоговом шоке, перитоните и различных видах экзогенных интоксикаций.
Эндокринные свойства
Легкие — это гигантский эндокринный орган. В них метаболизируется, модифицируется, деградирует и активируется много веществ, поступающих из системного кровотока. В легких содержится более 40 типов различных клеток, однако альвеолоциты I и II типа, альвеолярные макрофаги и клетки Клара обнаружены только в них. Здесь синтезируется большое количество гормонов, которые действуют как в пределах легких, так и на клетки и ткани других органов и систем организма.
К эндокринным продуктам легких относятся: биогенные амины, арахидоновая кислота и другие метаболиты фосфолипидов мембран клеток, а также пептиды. Поскольку легкие обладают единым капиллярным руслом, через которое в нормальных условиях проходит весь объем циркулирующей крови, этот орган идеально подходит для регуляции выработки вазоактивных веществ. Бóльшая их часть (серотонин, АТФ, простагландины) инактивируется или удаляется из кровотока при однократном прохождении крови через легкие. При этом норадреналин и гистамин подвергаются только умеренным изменениям в легких. Таким путем легкие защищают организм от эндогенной интоксикации и действия вазоактивных веществ.
За что отвечают легкие в организме
Большинство людей не контролирует свое дыхание. Следует отметить, чем выше частота дыхания, тем больше вероятность возникновения серьезных проблем со здоровьем.
Итак, как же дышать правильно и с пользой для здоровья?
Дыхание через нос является наиболее правильным и оптимальным, в то время как дыхание ртом снижает оксигенацию тканей, повышает частоту сердечных сокращений и кровяное давление, а также имеет множество других неблагоприятных последствий для здоровья.
Преимущества носового дыхания очевидны.
При дыхании через рот отсутствуют барьеры, препятствующие попаданию болезнетворных микробов в организм.
Во-вторых, носовое дыхание обеспечивает лучший кровоток и объем легких. Расширение сосудов под воздействием оксида азота увеличивает площадь поверхности альвеол, в результате чего кислород в легких поглощается более эффективно.
Носовое дыхание (в отличие от дыхания через рот) улучшает кровообращение, повышает уровень кислорода в крови и уровень углекислого газа, замедляет частоту дыхания и увеличивает общий объем легких.
Постоянное дыхание через рот вызывает сужение дыхательных путей.
При дыхании через рот происходит чрезмерная стимуляция легких кислородом, но поскольку поступающий таким образом воздух не увлажнен, а сосуды недостаточно расширены, то фактическая абсорбция кислорода через альвеолы значительно ниже, чем при носовом дыхании.
В-третьих, носовое дыхание участвует в терморегуляции организма, помогая поддерживать температуру тела.
В-четвертых, дыхание через нос улучшает мозговую деятельность и функционирование всех органов и систем организма.
Носовое дыхание, как часть дыхательного процесса в организме, также контролируется гипоталамусом. При увеличении воздушного потока через правую ноздрю наблюдается повышение активности левого полушария мозга, отвечающего за логику и анализ, а при увеличении воздушного потока через левую ноздрю наблюдается повышение активности правого полушария мозга, отвечающего за обработку невербальной информации и пространственную ориентацию.
При дыхании через рот мы отказываем в оптимальной оксигенации нашему сердцу, мозгу и всем другим органам, в результате чего могут развиться аритмии и другие сердечные заболевания.
В пятых, носовое дыхание помогает при высоких физических нагрузках, в том числе во время тренировок.
Когда уровень углекислого газа в нашем организме слишком низкий, происходит нарушение кислотно-щелочного равновесия, изменяется pH крови, что приводит к ухудшению способности гемоглобина выделять кислород нашим клеткам (эффект Вериго – Бора). Эффект Вериго-Бора был открыт независимо друг от друга русским физиологом Б.Ф. Вериго в 1892 году и датским физиологом К. Бором в 1904 году, и заключается он в зависимости степени диссоциации оксигемоглобина от величины парциального давления углекислоты в альвеолярном воздухе и крови. При снижении парциального давления углекислого газа в крови сродство кислорода к гемоглобину повышается, что препятствует переходу кислорода из капилляров в ткани.
Носовое дыхание создает примерно на 50 % больше сопротивления воздушному потоку у здоровых людей, чем дыхание через рот, а также помогает замедлить дыхательный цикл, уменьшить количество дыхательных движений, что приводит к увеличению поглощения кислорода на 10-20 %.
Таким образом, если мы хотим улучшить свои физические показатели, во время физических нагрузок следует дышать носом. Интенсивность занятий спортом необходимо регулировать в соответствии с дыханием. Если вы чувствуете, что дыхания носом вам не хватает, необходимо снизить темп тренировки. Это временное явление, через довольно быстрый промежуток времени организм начнет приспосабливаться к повышенному уровню углекислого газа.
В шестых, носовое дыхание обладает терапевтическим действием. При правильном дыхании через нос можно снизить артериальное давление и снизить уровень стресса.
Дыхание через рот может привести к нарушению прикуса, изменению анатомии лица у детей, ухудшает качество сна, в результате чего мы выглядим и чувствуем себя уставшим. Также при дыхании через рот ускоряется потеря воды, в результате чего возможно обезвоживание.
При дыхании через рот пропускается много важных этапов в этом физиологическом процессе, что может привести к проблемам со здоровьем, таким как храп, ночное апноэ. Дыхание через рот способствует гипервентиляции, которая фактически снижает оксигенацию тканей. Дыхание ртом также приводит к снижению уровня углекислого газа в организме и снижению способности легких отфильтровывать токсичные загрязнения, поступающие из воздуха.
Дыхание ртом можно использовать в экстренных случаях. При гипоксии наш организм рефлекторно реагирует на недостаток кислорода, начиная зевать, пытаясь таким образом увеличить количество поступающего воздуха.
В следующий раз мы рассмотрим несколько техник контролируемого дыхания, которые помогут вам улучшить свое здоровье.
За что отвечают легкие в организме
2.1. Дыхательные функции легких. Альвеолярное дыхание
Легкие играют важную роль не только в регуляции и обеспечении внешнего дыхания, но выполняют и ряд недыхательных функций. Недыхательные функции легких включают их участие в голосообразовании, регуляции теплоотдачи и кислотно-основного состояния организма, иммунных реакциях, в обеспечении тканевого фагоцитоза, регуляции метаболизма биологически активных прессорных и депрессорных субстанций, прокоагулянтных и антикоагулянтных факторов свертывания крови. В легких инактивируются пептиды, цикличесские нуклеотиды, простагландины, ксенобиотики, а также гистамин, серотонин.
Дыхательная функция легких определяется их участием в обеспечении альвеолярного дыхания, а также в регуляции внешнего дыхания за счет наличия мощных рефлексогенных зон.
Состояние легочной вентиляции определяется глубиной дыхания (дыхательным объемом) и частотой дыхательных движений.
Различают следующие объемы дыхания:
Дыхательный объем – объем вдоха и выдоха при спокойном дыхании.
Резервный объем вдоха и выдоха – количество воздуха, которое человек может дополнительно вдохнуть или выдохнуть при нормальном дыхании.
Остаточный объем – количество воздуха, оставшегося в легких, после максимального выдоха.
Жизненная емкость легких (ЖЁЛ) – наибольшее количество воздуха, которое можно максимально выдохнуть после максимального вдоха (сумма дыхательного объема и резервных объемов вдоха и выдоха)
Функциональная остаточная емкость – количество воздуха, оставшееся в легких после спокойного выдоха.
Жизненную ёмкость легких можно вычислить по формуле ЖЁЛ (л)= 2,5*рост (в м).
ЖЁЛ зависит от роста, возраста человека, рода занятий, особенно велико у пловцов и гребцов (до 8 л).
Легкие плода и новорожденных, не совершивших первый вдох, не содержат воздуха.
Различают анатомическое и функциональное мертвое пространство.
Анатомическое мертвое пространство – это объем невентилируемых воздухоносных путей – трахеи, бронхов и бронхиол.
Функциональное мертвое пространство – более емкое понятие, оно включает не только анатомическое мертвое пространство, а также вентилируемые, но неперфузируемые альвеолы.
Минутный объем дыхания равен произведению дыхательного объема на частоту дыхательных движений. Частота дыхательных движений у детей различна: у новорожденных составляет 40-50 в мин, у грудных детей 30-40 в мин, в детском возрасте 20-30 в мин. У взрослого человека частота дыхательных движений составляет 14 – 18 в мин.
Следует отметить, что диффузионное давление для О2 составляет около 60 мм. рт.ст, а для СО2 около 6 мм.рт.ст. Однако, необходимо учесть, что СО2 значительно быстрее диффундирует через альвеолярно–капиллярную мембрану в связи с тем, что коэффициент его растворимости в биологической среде в 20 раз больше, чем у кислорода.
В легких взрослого человека содержится около 300 млн. альвеол, диаметр которых составляет около 0,2 мм. Две соседние альвеолы отделены друг от друга двумя слоями эндотелия и эпителия, расположенными на базальной мембране. Между этими слоями находится интерстициальное пространство. Альвеолярный эпителий и эндотелий капилляров образуют альвеолярно – капиллярную мембрану, через которую происходит диффузия газов; толщина мембраны составляет от 0,2 мкм до 2 мкм в местах скопления эластических и коллагеновых волокон. Площадь газообмена в легких находится в зависимости от возраста и колеблется от 40 до 140 м 2 (рис.4).
Рис.4. Схема строения альвеолярного дерева
Альвеолярно–капиллярная диффузия во многом зависит от эластичности легочной ткани, обеспечивается в значительной мере продукцией сурфактанта.
Различают два типа эпителия, выстилающего альвеолярные клетки. Клетки I типа – это плоский эпителий, занимает до 95 % площади альвеолярной поверхности, содержит небольшое количество органоидов. Клетки IIтипа крупные, имеют округлую форму, ядра и микроворсинки, синтезируют сурфактант.
Сурфактант легких – это смесь поверхностно-активных веществ (ПАВ), состоящая на 70 – 80% из фосфатидилхолина, фосфатидилглицерола, дипальмитолфосфатидилхолина и белков сурфактанта, продуцируемых альвеолоцитами II типа. Молекулы апопротеинов, фосфолипидов имеют гидрофильный и гидрофобные концы, обращенные соответственно в альвеолярную жидкость и альвеолярный воздух. Белки сурфактанта (SPA, SP-R, SP-C,SP-D) не только способствуют снижению поверхностного натяжения альвеол, обеспечиваемому фосфолипидами, но и обладают защитной функцией.
Система легочного сурфактанта играет многоплановую роль, обеспечивая антиателэктатическую функцию, способствует диффузии О2, участвует в регуляции водного обмена в легких, защищает организм от проникновения вредоносных мелкодисперсных аэрозолей, обладает свойствами антиоксиданта.
Сурфактант, как указывалось выше, уменьшает поверхностное натяжение альвеол в 2 – 10 раз, тем самым, предотвращая спадение альвеол. Сурфактант содержится не только на внутренней поверхности альвеол, но и на плевре, брюшине, перикарде, синовиальных оболочках, слизистой глазных яблок. Сурфактант обеспечивает раскрытое состояние мелких дыхательных путей, усиливает фагоцитирующую активность макрофагов, подавляет выделение медиаторов воспаления, обладает свойствами антиоксиданта, оказывает антибактериальное и противовирусное действие.
При дефиците сурфактанта некоторые альвеолы подвергаются ателектазу, другие – перерастягиваются, вентиляция легких становится негомогенной, нарушается вентиляционно – перфузионное отношение.
При спадении альвеолы концентрация сурфактанта на ее поверхности возрастает, возникает снижение поверхностного натяжения, что повышает их стабильность и препятствует дальнейшему спадению альвеол. Стабильность альвеол обеспечивается и так называемым феноменом «взаимозависимости» альвеол, т.е. их взаимной тяги. У недоношенных новорожденных недостаточность синтеза сурфактанта может быть причиной развития респираторного дистресс – синдрома, характеризующегося ригидными легкими.
Как известно, легкие в отличие от трахеи и бронхов являются мощной рефлексогенной зоной, обеспечивающей регуляцию внешнего дыхания в условиях нормы и патологии.
В паренхиме легких имеются различные высоко- и низкочувствительные рецепторы растяжения альвеол, медленно-адаптирующиеся и быстро-адаптирующиеся к структурным изменениям в легких. Медленно-адаптирующиеся рецепторы растяжения альвеол являются высокочувствительными, низкопороговыми механорецепторами, реагирующими на объем вдыхаемого воздуха. Эти рецепторы являются окончанием толстых миелинизированных волокон n.vagus. Афферентация с этих рецепторов при участии ретикулярной формации ствола мозга переключается на инспираторные нейроны дорзальной дыхательной группы продолговатого мозга, обеспечивая развитие рефлекса Геринга-Брейера. Рефлекс Геринга-Брейера участвует во время сна в смене фаз дыхательного цикла. В условиях патологии при участии этого рефлекса формируются испираторная, экспираторная и смешанная одышки.
Другой группой рецепторов паренхимы легких являются быстроадаптирующиеся рецепторы спадения альвеол и юкстакапилярные рецепторы, реагирующие соответственно на спадение альвеол и возрастание уровня тканевой жидкости. Импульсация с этих рецепторов проводится по мало– и немиелинизированным волокнам n.vagus в продолговатый мозг, вызывая развитие тахипное.
При раздражении С-волокон возникают брадикардия, тахи- и апное, гипер- и диссекреция слизи в воздухоносных путях.
2.2. Кровоснабжение и лимфоснабжение легких
Легкие получают кровь от системы легочных сосудов (малый круг кровообращения) и бронхиальных сосудов (большой круг кровообращения). Основной функцией малого круга кровообращения является оксигенация венозной крови и удаление из нее СО2.
Среднее время прохождения крови через малый круг составляет в среднем 4,5 – 5,0 сек.
В состоянии покоя в сосудах легких находится около 500 мл крови (10 % от общего объема). В условиях нагрузки объем крови в легких может возрастать в 5–6 раз, при этом происходит лишь незначительное увеличение давления в сосудах малого круга кровообращения за счет высокой растяжимости. Давление в артериолах легких составляет в среднем 9 – 15 мм. рт. ст.
В покое кровоток в легких неоднороден, большая часть его направлена в нижние зоны.
Система бронхиальных сосудов снабжает кровью дыхательные пути вплоть до терминальных бронхиол, составляя около 3% от величины легочного кровотока.
Гидродинамические параметры бронхиальных сосудов обеспечивают транспорт воды в интерстиций и последующее лимфообразование. В легких осуществляются анастомозы между сосудами большого и малого круга кровообращения.
Суммарно в легких отношение легочной вентиляции и легочной перфузии составляет примерно 0,8 – 1,0. При вертикальном положении человека снижается интенсивность кровотока у верхушек легких.
Лимфатические сосуды расположены в паренхиме легких и на поверхности висцеральной плевры, впадают в лимфатические узлы, расположенные вокруг крупных воздухоносных путей (ВП) и в средостении. Лимфоидная ткань находится в стенках воздухоносных путей. Терминальные мешки лимфатической системы расположены в субплевральной, перибронхиальной соединительной ткани, а затем поступают в собирательные лимфатические сосуды легких.
Регуляция легочного кровотока обеспечивается за счет влияния вегетативной нервной системы, а также ряда гуморальных факторов; в частности вазодилатирующих простагландина J2 – метаболита арахидоновой кислоты, оксида азота и вазоконстрикторных соединений: эндотелинов, тромбоксана.
Эндотелины продуцируются эндотелиальными клетками легочных сосудов и клетками бронхиального эпителия и вызывают вазоконстрикцию, являются медиаторами легочной гипоксической вазоконстрикции, вызывают сокращения гладкой мускулатуры воздухоносных путей.