За что отвечают ряды в периодической таблице
Таблица Менделеева: что это такое и как ей пользоваться
Как пользоваться таблицей Менделеева? Для непосвященного человека читать таблицу Менделеева – всё равно, что для гнома смотреть на древние руны эльфов. А таблица Менделеева может рассказать о мире очень многое.
Помимо того, что сослужит вам службу на экзамене, она еще и просто незаменима при решении огромного количества химических и физических задач. Но как ее читать? К счастью, сегодня этому искусству может научиться каждый. В этой статье расскажем, как понять таблицу Менделеева.
Периодическая система химических элементов (таблица Менделеева) – это классификация химических элементов, которая устанавливает зависимость различных свойств элементов от заряда атомного ядра.
История создания Таблицы
Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог. За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов.
Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.

Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»
В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств.
Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.

В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически.
Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.
Современный вид таблицы Менделеева
Ниже приведем саму таблицу
Сегодня для упорядочения элементов вместо атомного веса (атомной массы) используется понятие атомного числа (числа протонов в ядре). В таблице содержится 120 элементов, которые расположены слева направо в порядке возрастания атомного числа (числа протонов)
Столбцы таблицы представляют собой так называемые группы, а строки – периоды. В таблице 18 групп и 8 периодов.
Что мы узнаем об элементе по таблице? Для примера, возьмем третий элемент в таблице – литий, и рассмотрим его подробно.
Первым делом мы видим сам символ элемента и его название под ним. В верхнем левом углу находится атомный номер элемента, в порядке которого элемент расположен в таблице. Атомный номер, как уже было сказано, равен числу протонов в ядре. Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов).
Атомная масса указана под атомным числом (в данном варианте таблицы). Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число. Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем.
Вот и закончился наш курс “Таблица Менделеева для чайников”. В завершение, предлагаем вам посмотреть тематическое видео, и надеемся, что вопрос о том, как пользоваться периодической таблицей Менделеева, стал вам более понятен. Напоминаем, что изучать новый предмет всегда эффективнее не одному, а при помощи опытного наставника. Именно поэтому, никогда не стоит забывать о студенческом сервисе, который с радостью поделится с вами своими знаниями и опытом.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Какой гений всё-таки был Менделеев! Айфон рядом не стоял
Периодическая таблица, таблица Менделеева — кто не помнит её по школьным урокам химии и физики?
Между тем периодическая таблица Менделеева, по мнению множества видных ученых прошлого и современности, стала определяющей вехой не только в химии, но и во всей современной фундаментальной науки и её прямого выражения — техники, которая нас окружает.
Кто вообще такой Менделеев?

“Трёхногий” портрет отца мировой химии
Удивительно, что именно Менделеев стал родоначальником Периодического закона, ставшего основой периодической системы химических элементов.
Ставший 17-м ребенком директора Тобольской гимназии, он не проявлял призвания к какой-либо науке вплоть до старших курсов гимназии, однажды оставшись на второй год. Со временем ему удалось подтянуться и закончить Главный педагогический институт Петербурга с золотой медалью.
Став учителем в Одессе, он проявлял множество странных, нехарактерных для интеллигента того времени привычек и увлечений. Одним из них было увлечение кожевенным делом и шитьё: Менделеев самостоятельно переплетал книги, делал чемоданы и шил одежду для себя самого.

Пороховые заводы Менделеева
В числе других его увлечений оказалось воздухоплавание, экономика и футурология. Попутно он создал основы современной метрологии, разработал первый ледокол. Занятие естественными науками приводило ученого то к созданию русского бездымного пороха, то к попытке разработки собственной теории эфира для объяснения свойств капиллярных сосудов.
Однако водка, несмотря на устоявшееся мнение, никак не связана с именем Менделеева. Водка родилась задолго до защиты диссертации «О соединении спирта с водой», посвященной на самом деле теории растворов (указал о необходимости учитывать химизм раствора), а не русскому национальному напитку.

Менделеева совершил первый метеорологический полет в России
Но все же главное его открытие — Периодический закон: сегодня его относят к одному из фундаментальных законов мироздания, поскольку она до сих по является аксиоматической, абсолютной.
Это противоречит самим законам науки. Однако, правота Менделеева подтверждается раз за разом. И многое мы видим прямо за экраном своего монитора.
Откуда появилась великая таблица Мендлеева?

Памятники Менделееву существуют во всех странах мира
К моменту появления периодической таблицы в 1869 году было открыто 63 химических элемента. Все они представлялись в виде хаотического набора, хотя попытки какого-то упорядочения совершались регулярно.
Первой известной публикацией на этот счет стал «закон триад» (1829 год) Иоганна Дёберейнера, однако он дальше понимания связи атомной массы и химических свойств элементов не продвинулся.
Позднее Александр Эмиль Шанкуртуа создал «Теллуров винт» (1862), разместив элементы на винтовой линии. Ему удалось увидеть частое циклическое повторение химических свойств по вертикали.
Самой правдоподобной стала система Юлиуса Лотара Мейера (1864), который смог составить таблицу, упорядочив элементы по свойствам и весам. Увы, он взял за основу периодичности свойств валентность, что оказалось ошибкой.

Главный конкурент, который подсказал идею: Лотар Мейер
Менделеев, по собственным словам, занимался проблемой систематизации химических элементов на протяжении 20 лет (а не спонтанно во время сна, вопреки устоявшемуся мнению), перекладывая карточки с названием и свойствами элементов в поиске нужной комбинации.
И в 1869 ему удалось найти ответ, опубликованный в статье журнала Русского химического общества «Соотношение свойств с атомным весом элементов».
Сегодня существует несколько сотен вариантов изображения его периодической системы: в виде кривых, таблиц и даже других геометрических фигур.

Периодическая таблица Мейера довольно скудна
Чуть позже идею подхватил Мейер, опубликовав собственную работу с аналогичным результатом. Знал ли он о достижении Менделеева? Незивестно. К тому же он смог организовать лишь 28 элементов
Однако, из-за него в Европе и США Периодическая таблица Менделеева не имеет в названии имени собственного.
Тем не менее, мировое сообщество ученых трижды выдвигало Менделеева лауреатом Нобелевской премии. Увы, ему не удалось стать членом Российской академии наук, а её члены раз за разом отвергали кандидатуру.
Таблица Менделеева важна, но Периодический закон – ещё важнее

Менделеев смог открыть один из всеобъемлющих законов
Как ни странно, важнейшее открытие Менделеева обычно остается за кадром – Периодический закон:
Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.
Современная формулировка практически ничего не меняет, лишь дополняя исходный текст:
Свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).
Периодическая система стала графическим выражением Периодического закона, который устанавливает зависимость свойств элементов от их атомного веса (атомной массы или атомного числа — числа протонов в атоме).

Современный вид таблицы Менделеева
Размещение элементов в таблице удовлетворяет одновременно 2 условиям: они
▪️ организованы веса атомов,
▪️ химические и физические свойства каждого элемента сходны с предыдущим.
Закон справедлив для всех существующих и гипотетических элементов, исключая самых первых — они просто не имеют ничего перед собой (хотя многие пытаются разместить там гипотетический «эфир», ссылаясь на самого Менделеева, хотя он таких попыток не делал).
Интересно, что в первой версии было лишь 60 элементов таблицы. Сегодня их 118, а конечно число… Теоретически оно могло бы быть бесконечным, если бы не квантовая физика, но об этом чуть позже.
Почему в таблице Мендлеева были пустые клетки?

Памятник Менделееву в Тобольске пора пополнять новыми элементами
Значимость теории Менделеева, спустя некоторое время ставшей аксиомой современной науки, проявилась довольно быстро. Дело в том, что до него элементы упорядочивали в сплошную линию.
Но уже первая версия таблицы Менделеева оставляла пустыми несколько клеток под новые элементы: пустые места должны были занять так называемые эка-элементы, похожие на соседей. Менделееву даже удалось с поразительной точностью предсказать целый ряд их физических и химических свойств.
Соответствующие экабор, экаалюминий, экасилиций, экамарганец были получены экспериментально, получив уже в наше время собственные имена скандий, галлий, германий, технеций. Практика эка-элементов сохраняется и по сей день.
Для известных в середине XIX века бериллия, индия, урана, тория, церия, титана, иттрия Менделееву пришлось исправить атомные веса, чтобы разместить их в таблице согласно химическим свойствам, на что не решился ни один другой исследователь. И это тоже оказалось верным.

Один из первых вариантов таблицы Менделеева с предсказанными элементами
Абсолютность таблицы однажды подвела исследователей: инертным газам в первое время не нашлось в ней места, поэтому их существование активно отвергалось.
В дальнейшем периодичность позволила найти класс несуществующих (или чрезвычайно редких) в природе при обычных состояниях трансурановых элементов.
Как таблицу Менделеева проверили и доделали другие

Мозли связал номер элемента в Таблице и его физические свойства
Окончательный вид подтверждения Периодического закона нашел английский физик Генри Мозли:
Закон Мозли — закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером.
Это привело к более глубокой трактовке закона, о котором Менделеев не мог даже догадываться:
▪️ порядковый номер элемента = мера электрического заряда атомного ядра этого элемента,
▪️ номер горизонтального ряда (периода) = число электронных оболочек атома,
▪️ номер вертикального ряда (группы) определяет квантовую структуру оболочки, что определяет сходство химических свойств.
Как понять таблицу Менделеева, если ты не шаришь?

Краткая шпаргалка к Таблице Менделеева
Периодический закон легко применять на практике. Ещё со школы мы все должны знать: натрий похож на калий, фтор похож на хлор, а золото — на серебро и медь. Следующий элемент просто как бы прибавляет к уже существующим ещё что-то.
По самой таблице так же можно узнать примерные свойства. В подгруппах сверху вниз:
▪️ усиливаются металлические свойства и ослабевают неметаллические (появляются свободные электроны — проводит ток);
▪️ возрастает атомный радиус (выше плотность/масса),
▪️ возрастает сила образованных элементом оснований и бескислородных кислот (действие сильнее),
▪️ электроотрицательность падает (хуже соединяется с другими элементами).
В периоде с увеличением порядкового номера элемента:
▪️ электроотрицательность возрастает (лучше образовывает соединения),
▪️ металлические свойства убывают, неметаллические возрастают (хуже проводит ток),
▪️ атомный радиус падает (хуже создает соединения).
Ещё одно свойство связано с традиционной, «короткой» формой таблицы, предложенной самим Менделеевым: если сложить её пополам, посредине IV группы, окажется, что элементы напротив друг друга могут образовывать соединения друг с другом.
Хотя на первый взгляд это не нужно в обыденности, таблица Менделеева помогает быстро понять, например: какая кислота «сильнее», что лучше проводит ток, к чему не стоит прикасаться, чем можно отравиться.
Как таблицу Менделеева пополнили ядерные элементы

Здесь создают новые химические элементы
Вряд ли Менделеев предполагал, как далеко зайдут его последователи в поиске продолжения таблицы: в его время элементы получали только из природных материалов — минералов, руд.
Открытие ядерной реакции позволило создать новый способ «пополнения» таблицы: расщепление урана (элемент 92) позволило создать трансурановые элементы, вместе с которыми известно 118 элементов.

Юрий Оганесян из НИЯУ МИФИ, соавтор открытия 5 трансурановых элементов
Например, для создания теннесина (номер 117 соответствует числу протонов в ядре) ученые объединили пучки кальция (20 протонов) с мишенью из беркелия (97 протонов).
Синтез кальция с калифорнием (98) позволил появиться на свет долгоживущему изотопу оганесона (118).
Что ждёт таблицу Менделеева в ближайшем будущем?

Границы таблицы попытался определить Ричард Фейнман
Элементы 119 и 120, над получением которых работают исследователи Объединенного института ядерных исследований (ОИЯИ) в Дубне (Московская область), обещают показать принципиально новые физические свойства.
Они которые не вписываются в существующую физическую модель мироздания. А закон Менделеева продолжает работать.
Ричард Фейнман предположил, что таблица закончится на 137-м элементе. Но не потому, что больше их не существует — мы просто не сможем определить количество протонов и нейтронов в его ядре.

В ближайшие 2 года ожидается открытие 120 элемента
Число 1/137 – постоянная Зоммерфельда (постоянная тонкой структуры), которая описывает вероятность поглощения или излучения электроном фотона.
Элемент с 137 электронами в соответствии с определением этой константы должен с вероятностью в 100% поглощать падающий на него фотон.
Его электроны будут вращаться со скоростью света. А электроны элемента 139, чтобы существовать, должны вращаться быстрее, чем скорость света. Не может быть?

Менделеев объединил усилия всех
Увы, текущие расчеты показывают, что фотоны в огромных атомах оганесона должны превысить скорость света, что противоречит самой сути фотона – единичного кванта света.
Это нарушает основные принципы квантовой физики. Но, возможно, именно открытие новых элементов Периодической таблицы Менделеева даст ключ к созданию Теории Всего, которая должна объединить существующие знания в естественных науках.
Закон, открытый 150 лет назад русским ученым, изменит понимание мироздания. Быть может ещё сильнее, чем когда-то это сделала Теория относительности.
Периодическая система Менделеева
Если химические элементы расположить в порядке возрастания атомных номеров, то их химические свойства укладываются в определенную схему.
Дмитрий Иванович Менделеев любил рассказывать, что идея периодической системы пришла ему во сне. Как и многие химики середины XIX века, он пытался как-то систематизировать огромное количество открываемых химических элементов. Менделеев тогда работал над книгой «Основы химии», и ему все время казалось, что для веществ, которые он описывал, непременно должен существовать какой-то способ упорядочивания, который сделает их больше чем просто случайным набором элементов. Именно такой способ упорядочивания, такой закон он и увидел во сне.
В своей таблице (сегодня мы ее называем периодической таблицей, или системой, элементов) Менделеев расположил химические элементы по рядам в порядке возрастания их массы, подобрав длину рядов таким образом, чтобы химические элементы в одной колонке имели похожие химические свойства. Так, например, правая крайняя колонка таблицы содержит гелий, неон, аргон, криптон, ксенон и радон. Это благородные газы * — вещества, которые неохотно реагируют с другими элементами и проявляют низкую химическую активность. В противоположность этому, элементы самой левой колонки — литий, натрий, калий и др. — реагируют с другими веществами бурно, процесс носит взрывной характер. Аналогичные утверждения можно сделать и о химических свойствах элементов в других колонках таблицы — внутри колонки эти свойства подобны, но варьируются при переходе от одной колонки к другой.
Нельзя не отдать дань смелости мысли Менделеева, решившегося опубликовать свои результаты. С одной стороны, таблица в первоначальном виде содержала много пустых клеток. Элементы, о существовании которых мы сейчас знаем, тогда еще только предстояло открыть. (Действительно, открытие этих элементов, включая скандий и германий, стало одним из величайших триумфов периодической системы.) С другой стороны, Менделееву пришлось допустить, что атомные веса некоторых элементов были измерены неправильно, так как в противном случае они не вписались бы в систему. И опять оказалось, что он был прав.
Периодическая система в своем первом варианте просто отражала существующее в природе положение дел. Как и в случае с кеплеровскими законами движения планет, таблица никак не объясняла, почему это должно быть именно так. И только с появлением квантовой механики и, в особенности, принципа запрета Паули стал понятен истинный смысл расположения элементов в периодической таблице.
Сегодня мы смотрим на периодическую таблицу с точки зрения того, как электроны заполняют электронные слои в атоме (см. Принцип Aufbau). Химические свойства атома (то есть то, какого рода связи будут образованы с другими атомами) определяются числом электронов в наружном слое. Так, у водорода и лития только по одному внешнему электрону, поэтому в химических реакциях они ведут себя похоже. В свою очередь, гелий и неон оба имеют заполненные внешние оболочки, и тоже ведут себя похоже, но совершенно не так, как водород и литий.
Химические элементы вплоть до урана (содержит 92 протона и 92 электрона) встречаются в природе. Начиная с номера 93 идут искусственные элементы, созданные в лаборатории. Пока самый большой заявленный учеными номер — 118.
* Эти вещества назвали инертными газами, но название было изменено в 1962 году, когда было обнаружено, что ксенон может все-таки реагировать с фтором. — Прим. автора
Русский химик. Родился в Сибири, в городе Тобольске, в семье был младшим из 17 детей. Детство Менделеева было нелегким. Его отец, школьный учитель, ослеп, и матери, чтобы содержать семью, пришлось управлять стекольным заводом. Отец умер, когда Менделееву было 13 лет, затем сгорел завод, а после этого умерла мать. Свои научные знания мальчик почерпнул у мужа сестры.
Перед смертью мать определила Дмитрия в Педагогический институт в Санкт-Петербурге. Там Менделеев получил научную степень по химии и продолжил свое обучение во Франции и Германии. В Карлсруэ он встретил итальянского химика Станислава Канниццаро (Stanislao Cannizaro, 1826–1910), чья идея о разграничении понятий атомного и молекулярного веса произвела большое впечатление на русского ученого. Вернувшись в Санкт-Петербург, Менделеев в 1864 году стал профессором химии Технологического института.
Периодическая таблица, которую Менделеев составлял с конца 1860-х годов, не сразу получила признание, но впоследствии сделала его самым известным русским ученым. В 1890 году он высказался в поддержку студентов, выступавших за социальную реформу, за что был уволен из университета. Но больше всего судьба была несправедлива к Менделееву, когда в 1906 году ему не хватило всего одного голоса для получения Нобелевской премии в области химии. Премия досталась Анри Муассану (Henri Moissan, 1852–1907), которому удалось выделить фтор — всего лишь один химический элемент, в то время как Менделеев создал классификацию их всех.
Следующий грубейший научный промах Менделеева и его последователей: начало каждого периода щелочным металлом и окончание благородным газом. Ведь в первом периоде Периодической системы элементов в редакции Менделеева до 1902 года первым являлся не щелочной металл, а неметалл химически активный двух атомный газ водород, имеющий крайне низкую температуру кипения! В то время, как во всех последующих периодах первым был элемент группы щёлочноземельных металлов. Прокол в Периодической таблице элементов жутчайший! А в периодической таблице элементов в редакции Менделеева от 1902 и 1906 годов первым элементом в периодах являлся элемент группы благородных газов.
Тогда мировой науке официально следует принять то что первый правильный (естественный) период атомных уровней материи содержит 4 элемента, которые радикально отличаются друг от друга по физическим и химическим свойствам: водород (химический активный двух атомный газ), гелий (химически инертный одно атомный газ), литий (химически активный щелочной металл) и бериллий (химически активный щёлочноземельный металл-металлоид). Поэтому последние 4 элемента каждого последующего правильного (естественного) периода позиционно аналогичны неметаллу химически активному подобному галогенам двухатомному газу водороду, неметаллу химически инертному одноатомному газу гелию, химически активному щелочному металлу литию и химически активному щёлочноземельному металлу бериллию!
Смотрите подробности здесь:
Менделеева по справедливости не наградили Нобелевской Премией в 1906 году. Ведь его Периодическая таблица химических элементов грубо не верна в окончаниях всех периодов! Он даже не смог сформулировать ни одного настоящего периодического закона!
Теперь Комитет по присуждению Премии им. Альфреда Нобеля может с чистой душой, не опасаясь проявления со временем подвоха, присудить свою высокую Премию настоящему создателю Естественной системы элементов и открывателю целого пакета настоящих периодических законов россиянину Макееву Александру Константиновичу! Ау, нынешние Нобелевские Лауреаты, имеющие на то право, замолвите словечко в Нобелевский Комитет, пожалуйста!
Во всех школах и вузах России учат догматично, мировоззренчески-наркомански по таблице IUPAC от 1989 года и 2012 года. Эта таблица основана на таблице от 1905 года швейцарского химика Альфреда Вебера, где все периоды впервые на Земле были неправильно окончены на элементе группы благородных газов. Зато каждый из всех периодов, пусть и неправильных, представлялся одним рядом.
КАВЕРЗНЫЕ ГРАНИЦЫ ПЕРИОДОВ
Великий химик Менделеев
Всё призывал в науках мерить.
Без меры вся ж наука каша!
– Так изрекло светило наше.
Призвав других, он сам оплошал.
В Таблице периодов промах вдруг дал.
Элементы в ряды он построил,
И в группах столбцами достроил:
В начало строк – благородный газ,
Галогену в конец! – Был отдан приказ.
Поразмыслив всерьёз, диссидент
Изречёт: очень плох документ!
– Всяк период в конце с ошибкой!
Там на три элемента ошибка!
Ведь металлом щелочноземельным
Периодам быть завершеньем!
С наукой «Закон» стал в разладе.
– Себя не дал в цифирь приладить!
А раз формулы нет в цифири,
Не Закон он, как «мусор в квартире»!
Мы подводим всему делу итог,
Чему Светоч–Химик «царь» и «бог»:
Периодичности лишь Явление
Дмитрий открыл, без сомнения!
Но мир учёных незыблем,
Новатора довод не принял.
Как и прежде, Таблице молится,
А с диссидентами борется…
Мейер на восемь лет упредил,
Точно периоды нагородил,
Чарльз Жанет таблицу дополнил,
Но мало, кто сейчас это помнит…
Макеев Таблицу позже построил,
Все элементы на место пристроил.
По Жанету и Мейеру, которых не знал,
Но в границы периодов точно попал!




