Задание по геометрии построить mpn2 такие что mp a na
Задачи на построение по геометрии с примерами решения
Содержание:
Ранее мы выполняли построения на плоскости при помощи линейки с делениями, чертежного треугольника, транспортира и циркуля.
Математиков всегда интересовали построения геометрических фигур, которые можно выполнить только при помощи циркуля и линейки. В геометрии специально выделяют задачи на построение, которые могут быть решены с помощью этих двух инструментов.
Например, при помощи циркуля и линейки можно построить треугольник, стороны которого равны трем данным отрезкам. Или построить угол, равный данному углу.
Рассмотрим одну из таких задач на построение. На прямой
Найти точку — это значит построить ее при помощи циркуля и линейки. Если перемещать некоторую точку по прямой (положения К1 К2, К3), то расстояния от этой точки до точек А и В будут меняться. Когда эти расстояния станут равными, точка на прямой будет равноудалена от концов отрезка АВ. Значит, она будет лежать на серединном перпендикуляре к отрезку АВ. Это и есть идея построения: нужно построить серединный перпендикуляр к отрезку АВ и найти точку его пересечения с прямой
.
Чтобы построить серединный перпендикуляр, нужно построить две пересекающиеся окружности равных радиусов с центрами в точках А к В (рис. 293, б). Затем провести прямую MN через точки пересечения этих окружностей (ниже мы обоснуем это построение). В пересечении серединного перпендикуляра MN к отрезку АВ и прямой получим искомую точку К.
Рассмотренная задача может иметь и практический смысл. Допустим, есть два населенных пункта и шоссе рядом с ними. На шоссе нужно найти место для остановки, чтобы путь для жителей обоих населенных пунктов до остановки был одинаковым. Все построения будут сделаны на карте населенного пункта.
При решении задач на построение линейка считается односторонней и без делений. При помощи такой линейки нельзя построить две параллельные прямые, проведя линии по краям линейки, нельзя измерять и откладывать отрезки, нельзя строить перпендикуляры, используя прямоугольную форму линейки. Рассмотрим, какие операции можно выполнять линейкой, а какие циркулем.
Операции с линейкой
При помощи линейки можно провести (построить):
а) произвольную прямую;
б) прямую, проходящую через две точки (рис. 294).
Операции с циркулем
При помощи циркуля можно:
а) построить произвольную окружность и окружность (дугу окружности) с данным центром и радиусом, равным данному отрезку (рис. 295);
б) отложить отрезок, равный данному отрезку, на некоторой прямой.
Откладывание отрезка
Для откладывания отрезка, равного данному отрезку (рис. 296, а) на прямой
(рис. 296, б), следует: 1) отметить на прямой
точку М; 2) радиусом, равным а, провести дугу окружности с центром в точке М (сделать засечку на прямой
).
В пересечении дуги и прямой получим точку К и отрезок МК, равный
.
Операция откладывания отрезка на прямой позволяет построить сумму и разность двух отрезков (рис. 297): в первом случае на произвольной прямой откладывают последовательно два отрезка, во втором — на большем отрезке от любого его конца откладывают меньший отрезок.
В дальнейшем при решении задач на построение мы не будем описывать процедуру откладывания отрезка на прямой, считая ее элементарной операцией.
Перечислим 5 основных задач на построение, к которым сводятся другие задачи. Решая сложные задачи, будем ссылаться на эти основные, не описывая ту часть решения, которая связана с одной из основных задач.
В некотором смысле «линейка» и «циркуль» — это два идеальных робота, которые могут выполнять определенный набор операций. И наша задача — составить алгоритм из последовательности таких операций — команд для этих роботов, который приведет к построению необходимой фигуры. Фактически нужно написать программу для «циркуля» и «линейки».
Замечание. В треугольнике ABC стороны, противолежащие углам А, В и С, будем соответственно обозначать ,
и
, а сами эти углы —
,
и
(рис. 298). Медианы, проведенные к сторонам
,
и
, —
высоты —
биссектрисы —
Построение треугольника по трем сторонам. Построение угла, равного данному
Задача №1
Построить треугольник со сторонами ,
и
.
Решение:
Пусть даны отрезки ,
и
. На произвольной прямой откладываем отрезок АВ =
(рис.300).
Строим окружность с центром в точке А радиусом . Строим окружность с центром в точке В радиусом
. Находим точку С пересечения этих окружностей. Проведем отрезки АС и ВС.
Треугольник ABC — искомый, так как у него ВС = , АС =
, АВ =
по построению.
Задача имеет решение, если для данных отрезков ,
и
выполняется неравенство треугольника:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Задание по геометрии построить mpn2 такие что mp a na
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 · 83° = 166°. Угол MOK — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол MOK равен 166°. В треугольнике OMK стороны OK и OM равны как радиусы окружности, поэтому треугольник OMK — равнобедренный, следовательно, углы при основании равны. Сумма углов треугольника равна 180°, поэтому ∠OKM = ∠OMK = (180° − ∠KOM)/2 = (180° − 166°)/2 = 7°.
Приведём другое решение.
Найдём угол OKM: OKM = 90° − 83° = 7°. Треугольник OMK — равнобедренный, поэтому угол OMK равен углу OKM и равен 7°
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC и ∠ABC = 177°. Найдите величину угла BOC. Ответ дайте в градусах.
Угол BOC — центральный, поэтому он равен величине дуги, на которую опирается. Углы BAC вписанный, он равен половине дуги, на которую он опирается. Поскольку эти углы опираются на одну и ту же дугу, ∠BOC = 2∠BAC. Сумма углов треугольника равна 180°. Треугольник ABC — равнобедренный, углы при его основании равны, поэтому Следовательно, угол BОC = 3°.
Внимательный читатель заметит, что угол В тупой, поэтому центр окружности лежит вне треугольника. Очевидно, что это не влияет на справедливость вышеприведенного решения — задачу можно решить и вовсе без рисунка. Поэтому мы не стали менять тот рисунок, который был дан авторами задания.
В окружность вписан равносторонний восьмиугольник. Найдите величину угла ABC.
Построим OA и OC радиусы. Центральный угол AOC равен 360°:8 = 45°. Угол ABC — вписанный и опирается на ту же дугу, поэтому он равен 45°:2 = 22,5°.
В угол величиной 70° вписана окружность, которая касается его сторон в точках A и B. На одной из дуг этой окружности выбрали точку C так, как показано на рисунке. Найдите величину угла ACB.
Угол ACB — вписанный, он равен половине дуги AB. Угол АОВ — центральный, опирающийся на ту же дугу. Проведём радиусы ОА и ОВ в точки касания. Сумма углов четырёхугольника AOBD равна 360°. Поэтому
Величина центрального угла AOD равна 110°. Найдите величину вписанного угла ACB. Ответ дайте в градусах.
Угол AOB смежный с углом AOD, поэтому AOB = 180° − 110° = 70°. Центральный угол AOB и вписанный угол ACB опираются на одну дугу. Поэтому
К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB. Из теоремы Пифагора:
Четырехугольник ABCD вписан в окружность. Угол ABC равен 70°, угол CAD равен 49°. Найдите угол ABD. Ответ дайте в градусах.
Угол ABC — вписанный, опирается на дугу ADC, поэтому величина дуги ADC равна 2 · 70° = 140°. Угол CAD — вписанный, опирается на дугу CD, поэтому величина дуги CD равна 2 · 49° = 98°. Угол ABD — вписанный, опирается на дугу AD, поэтому ∠ABD = ∪AD/2 = (∪ADC − ∪CD)/2 = (140° − 98°)/2 = 21°.
Приведем решение Марии Васильевны.
Но ∠DBC = ∠CAD, поскольку они опираются на одну и ту же дугу CD.
Тогда ∠ABD = ∠ABC − ∠CAD = 70° − 49° = 21°.
К окружности с центром в точке проведены касательная
и секущая
. Найдите радиус окружности, если
,
.
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB: по теореме Пифагора равен 75.
К окружности с центром в точке проведены касательная
и секущая
. Найдите радиус окружности, если
,
.
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB: по теореме Пифагора равен см.
К окружности с центром в точке проведены касательная
и секущая
. Найдите радиус окружности, если
,
Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB: по теореме Пифагора равен см.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.
Вписанные углы ВСD и ВАD опираются на одну и ту же дугу окружности, поэтому они равны. Тем самым, угол OAB = 30°.
Точки A и B делят окружность на две дуги, длины которых относятся как 9:11. Найдите величину центрального угла, опирающегося на меньшую из дуг. Ответ дайте в градусах.
Дуги окружности относятся как 9:11, что в сумме дает 20 частей. Поэтому длина меньшей дуги составляет от всей окружности, тем самым, она равна
. Так как угол AOB — центральный, то он равен той дуге на которую он опирается. Таким образом,
.
Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.
Проведем радиусы OA и OB. Так как по условию задачи хорда AB равна радиусу, то треугольник AOB — равносторонний, следовательно, все его углы равны 60°. Угол AOB — центральный и равен 60° Угол ACB — вписанный и опирается на ту же дугу, что и угол AOB. Таким образом,
В окружность вписан равносторонний восьмиугольник. Найдите величину угла ABC.
Угол ABC — вписанный и опирается на диаметр AC. Таким образом, ∠ABC = 90°.
Аналоги к заданию № 311503: 311507 Все
Точки A, B, C и D лежат на одной окружности так, что хорды AB и СD взаимно перпендикулярны, а ∠BDC = 25°. Найдите величину угла ACD.
Треугольник BOD — прямоугольный, сумма его острых углов равна 90°. Поэтому ∠ABD = ∠OBD = 90° − 25° = 65°. Углы ABD и ACD опираются на одну дугу, поэтому эти углы равны. Таким образом, ∠ACD = 65°.
В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC. Ответ дайте в градусах.
Углы ACB и BAC равны, т. к. находятся при основании равнобедренного треугольника; пусть один из них равен x. Поскольку сумма углов треугольника равна 180°, имеем: ∠ABC = 180° − x − x. Угол ACB смежен с углом 123°, значит, равен 180° − 123° = 57°. Следовательно, x = 57°, откуда ∠ABC = 180° − 2·57° = 66°.
Аналоги к заданию № 37: 311680 340586 Все
Точка О — центр окружности, ∠AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах).
Вписанный угол ACB равен половине центрального угла AOB, опирающегося на ту же дугу, поэтому он равен 42°.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 25° и 30°. Найдите больший угол параллелограмма.
Сумма односторонних углов параллелограмма равна 180°. Поэтому величина большего угла параллелограмма будет равна:
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Запишите величины углов в ответ без пробелов в порядке неубывания.
Пусть углы трапеции равны
и угол
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180°:
откуда
Сумма смежных углов в трапеции равна 180°, следовательно,
Тем самым, три неизвестных угла равны 49°, 131° и 131°.
Задачи по планиметрии
Т.к. площади треугольников, имеющих общих угол, относятся как произведения сторон, образующих этот угол, то
Аналогично рассуждая, получаем, что
Следовательно, \[15+3\cdot \dfrac29S_
Т.к. медиана делит треугольник на два равновеликих треугольника, то
Таким образом, все семь образовавшихся треугольников имеют одинаковые площади. Значит,
Внутри равностороннего треугольника со стороной \(m\) движется точка. Докажите, что сумма расстояний от этой точки до сторон треугольника не меняется, и найдите эту сумму.
\[0,5m\cdot (OC_1+OA_1+OB_1)=S_<\triangle ABC>=\dfrac<\sqrt3>4m^2 \quad \Leftrightarrow \quad OC_1+OA_1+OB_1=\dfrac<\sqrt3>2m.\]
Таким образом, мы доказали, что для фиксированного равностороннего треугольника сумма постоянна, а также нашли ее.
Радиус вписанной в треугольник \(ABC\) окружности равен трети одной из его высот.
а) Докажите, что одна из сторон треугольника \(ABC\) равна среднему арифметическому двух других его сторон.
Таким образом, наибольший возможный периметр треугольника \(ABC\) равен 21.