Задатчик температуры что это
Очередной раз про САУО(система автоматического управления отопителем)
С приходом холодов участились вопросы по печке.
Мне отвечать надоело, и я решил перепостить сведения с сайта производителя.
И так по ссылке, если она будет живая скачиваем файл — www.ae.ru/technical_info/…/240/novaja_stranica.html
Если она умрет то в поиске набираем «НАИБОЛЕЕ ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ ПО САУО»
Кто и на это не способен, читаем в сотый раз.
ИНСТРУКЦИЯ ПО ПОИСКУ НЕИСПРАВНОСТЕЙ САУО
1. Проверить сопротивление датчика.
22 С — (2800|20)Ом
16 С — (2950|25)Ом
30 С — (2600|25)Ом
Характеристика 25 Ом/С
Если не исправен — заменить.
2. При работающем двигателе и подключенном датчике температуры.
Установить на задатчике температуры положение «min» (синяя точка) — выдержать в течении 10-15 секунд. Запустить двигатель. Отсоединить контроллер от разъёма X1 тестером измерить сопротивление между контактами Х1.4 и Х1.1 (проводка автомобиля) сопротивление датчика положения вала микромоторедуктора оно должно быть 800-1200 Ом для контроллеров 1303.3854, 1313.3854, 1333.3854 и 3600-5000 Ом для контроллера 1323.3854.
3. Провести аналогичную п.2 операцию, но в положении «max» (красная точка) задатчика.
Сопротивления датчика положения вала должно быть 3200-5000 Ом для контроллеров 1303.3854, 1313.3854, 1333.3854 и 1200-1600 Ом для контроллера 1323.3854. Если сопротивления не меняется или вообще отсутствует, то неисправен микромоторедуктор — заменить. Или неисправен контроллер — не подается напряжение на электродвигатель микромоторедуктора.
4. При работающем двигателе установить обороты электродвигателя отопителя на максимальные обороты.
Переключая с положения «min» в положение «max» задатчика температуры по уровню звука выходящего воздуха из дефлектора, расположенного над коллектором САУО можно оценить перемещается ли заслонка отопителя. Если звук не изменяется — заслонка отломана из-за попадания инородных предметов в отопитель через дефлектор стекла.
Разобрать отопитель со стороны моторного отсека, склеить дихлоританом привод.
Наиболее часто задаваемые вопросы по САУО
Вопрос: Помогите разобраться с логикой работы блока САУО.
Ответ: Контроллер рассчитан на эксплуатацию от минус 40 до плюс 65 градусов Цельсия. А логика простая: в зависимости от рассогласования между задатчиком и датчиком температуры определяется положение заслонки отопителя.
Вопрос: Каков алгоритм работы САУО при отключенном датчике температуры?
Ответ: При неисправном (отключенном) датчике температуры алгоритм работы отопителя должен быть следующий: на максимуме (красная точка) — движение на открытие заслонки; на минимуме (синяя точка) — движение на закрытие заслонки, остальные положения фиксируются в зависимости от задания температуры. Если при отключенном датчике температуры алгоритм работы другой, то есть вращение заслонки имеет место только на крайних положениях (min и max), то возможны две неисправности: 1) неисправен задатчик температуры контроллера (левая рукоятка); 2) неисправен датчик положения микромоторедуктора на отопителе (это менее вероятно). Вывод следующий: в первом случае необходимо сменить контроллер (либо заменить задатчик температуры).
Вопрос: Каков алгоритм управления оборотами вентилятора в автоматическом режиме?
Ответ: В автоматическом режиме, если температура задатчика близка к измеренной датчиком температуры, то обороты минимальные. Если рассогласование между задатчиком и датчиком более 5 градусов, то включаются средние обороты (аналогично положению «1»).
Вопрос: Если пятипозиционный блок отопителя включен в крайнее (последнее в красной шкале) правое положение, участвует ли датчик температуры в подаче воздуха?
Ответ: Нет, не участвует. Температура будет максимальной, какую сможет выдать отопитель.
Вопрос: Как работает электропривод крана отопителя печки?
Ответ: На ВАЗ-2110 кран отопителя отсутствует. Управление температурой в салоне осуществляется за счет воздушной заслонки, которая подает горячий воздух. Тосол поступает в печку и летом, из-за этого некоторые автолюбители дополнительно ставят кран для перекрытия подачи тосола в летний период эксплуатации. Система управления отопителем ВАЗ-2110 автоматическая, температура поддерживается с точностью до 2-х градусов Цельсия. Кроме того, управлять воздушной заслонкой предпочтительнее, чем краном (он закисает и заклинивает).
Вопрос: Иногда контролер отопителя 2110 перестает слушаться команды от ручки регулятора температуры, при этом не горит лампочка подсветки контролера при включенных габаритах. При шатании 6-ти разъемной колодки вверх-вниз внутри что-то щелкает, и лампа подсветки то горит, то не горит. Что делать?
Ответ: Попробовать разобрать 6-ти контактный разъем, обжать провода и гнезда разъема. Разобрать блок: если провода не сильно обгорели, то опаять, если сильно — заменить.
Вопрос: Вышел из строя операционный усилитель КР 1055 УД1, управляющий транзисторными ключами микромоторедуктора заслонки. Чем его можно заменить?
Ответ: Мощности ОУ вполне достаточно, так как он рассчитан на ток до 1А (микромоторедуктор потребляет не более 200 мА). Вывести ОУ из строя можно, если по выходу подать напряжение питания (+ аккумуляторной батареи). Аналоги: КР1055УД1 (АО «Элекс», Александров), TCA0372DP1 («Motorolla»), L272 («Tomson»), КР1040УД3 (АО «Орбита», Саранск).
Вопрос: Отопитель ВАЗ 2110 работает только в положении «2». В чем может быть проблема?
Ответ: Скорее всего, возможны следующие неисправности. 1. На корпусе отопителя сгорел дополнительный резистор, который позволяет регулировать обороты — через него в положении «А» и «1» подключается вентилятор. В этом случае нужно добраться до отопителя (это возможно только из моторного отсека) и заменить резистор. 2. Отгорели провода внутри контроллера (для устранения требуется разобрать контроллер и заменить их). 3. Отошел провод в блоке реле, расположенном справа под капотом.
Вопрос: Такая проблема с отопителем ВАЗ 2110 — дует чуть теплый воздух (микромоторедуктор и заслонка рециркуляции исправны).
Ответ: Необходимо проверить датчик температуры воздуха салона и уровень тосола, так как его низкий уровень влияет на температурный режим (может не попадать в «печку»).
Вопрос: При установке регулятора температуры в крайнее положение (горячий воздух), слышен звук движения заслонки и при включении вентилятора дует холодный забортный воздух, причем от режима вентилятора («А», «1» или «2») ничего не меняется в температуре воздуха. Почему?
Ответ: Внутри отопителя сломана заслонка подачи горячего воздуха. Необходимо разобрать отопитель со стороны моторного отсека и склеить ее дихлорэтаном (она из материала АБС).
Вопрос: В положении «А» четырехпозиционного переключателя режимов работы вентилятора при включении с 26 на 28 слышно, как срабатывает двигатель привода заслонки, при этом обороты вентилятора меняются со средних на минимальные, и поступает холодный воздух. При обратном переключении на 26 опять слышно движение заслонок, обороты вентилятора поднимаются, и начинает идти теплый воздух. В чем причина?
Ответ: Скорее всего, неисправен задатчик температуры воздуха салона — левый переключатель.
Вопрос: В каких случаях должен вращаться микровентилятор датчика температуры воздуха салона? Какое напряжение нужно подать, чтобы проверить его работоспособность?
Ответ: Вентилятор датчика температуры на минимуме и максимуме цифрового блока управления отопителем не вращается. Для проверки работоспособности датчика температуры следует подать напряжение 1.2 В на клеммы с обозначением «+» и «-«.
Вопрос: Должен ли выключаться микромоторедуктор в положениях «min» и «max» задатчика температуры, или ММР будет постоянно находиться под напряжением?
Ответ: Если это четырехпозиционный блок САУО 1303.3854 старого типа (выпуска до 2001 г.), то напряжение снижается по таймеру через 13+/-5 сек. в положении «min», а в «max» («красная точка») напряжение подается всегда. Привод заслонок должен выдержать все при напряжении ММР 15В, но напряжение на ММР должно быть 10+/-1 В по паспорту на контроллер. Если это — пятипозиционный блок САУО 1313.3854, то ММР после 13 секунд работы в «min» или «max» выключается.
Вопрос: Пятипозиционный отопитель перестал слушаться рукоятки задания температуры — гонит все время горячий воздух. Звука движения заслонки не слышно. Неужели сломался микромоторедуктор?
Ответ: Чтобы определить поломку, сначала стоит проверить датчик температуры (см. Инструкцию по поиску неисправностей САУО). Если с датчиком все в порядке, стоит попробовать проверить тестером, поступает ли напряжение питания на моторедуктор при переключении задатчика с «min» на «max» и наоборот (нужно успеть это сделать за 13 секунд, иначе питание отключится). Если напряжение поступает, значит, неисправен именно микромоторедуктор.
Вопрос: Отопитель работает только в крайних режимах, и заслонки на промежуточные указатели не реагируют. Что делать?
Ответ: Отключить контроллер от автомобиля и замерить сопротивление датчика положения вала (разъём расположен в «торпеде», контакты Х1.1 и Х1.4 находятся на контроллере). Если сопротивление меньше 200 Ом либо больше 8 кОм, и два провода, которые идут от данных контактов, не замыкают и не оборваны, значит, неисправен датчик положения вала, находящийся внутри микромоторедуктора. В этом случае следует заменить ММР.
ИНСТРУКЦИЯ ПО ПОИСКУ НЕИСПРАВНОСТЕЙ САУО
1. Проверить сопротивление датчика.
22 С — (2800|20)Ом
16 С — (2950|25)Ом
30 С — (2600|25)Ом
Характеристика 25 Ом/С
Если не исправен — заменить.
2. При работающем двигателе и подключенном датчике температуры.
Установить на задатчике температуры положение «min»(синяя точка) — выдержать в течении 10-15 секунд. Запустить двигатель. Отсоединить контроллер от разъёма X1 тестером измерить сопротивление между контактами Х1.4 и Х1.1 (проводка автомобиля) сопротивление датчика положения вала микромоторедуктора оно должно быть 800-1200 Ом для контроллеров 1303.3854, 1313.3854, 1333.3854 и 3600-5000 Ом для контроллера 1323.3854.
3. Провести аналогичную п.2 операцию, но в положении «max»(красная точка) задатчика.
Сопротивления датчика положения вала должно быть 3200-5000 Ом для контроллеров 1303.3854, 1313.3854, 1333.3854 и 1200-1600 Ом для контроллера 1323.3854. Если сопротивления не меняется или вообще отсутствует, то неисправен микромоторедуктор — заменить. Или неисправен контроллер — не подается напряжение на электродвигатель микромоторедуктора.
4. При работающем двигателе установить обороты электродвигателя отопителя на максимальные обороты.
Переключая с положения «min» в положение «max» задатчика температуры по уровню звука выходящего воздуха из дефлектора, расположенного над коллектором САУО можно оценить перемещается ли заслонка отопителя. Если звук не изменяется — заслонка отломана из-за попадания инородных предметов в отопитель через дефлектор стекла.
Разобрать отопитель со стороны моторного отсека, склеить дихлорэтаном привод.
ОТОПИТЕЛЬ
Разборка и сборка отопителя, воздуховодов и узлов управления отопителем
Перед снятием отопителя отсоедините массовый провод аккумуляторной батареи и слейте из системы охлаждения охлаждающую жидкость (см. главу «Система охлаждения»).
Выверните винты крепления и снимите накладку и облицовку рамы ветрового окна. Вывернув винты и отвернув гайки крепления, снимите с отопителя правую шумоизоляционную обивку 24 (рис.8-23).
Отсоедините шланги отопителя и электрические провода электродвигателя 9 вентилятора, микромоторедуктора 19 и электропневмоклапана 25.
Выверните винты и снимите скобы крепления, отделите передний корпус 3 воздухозаборника и кожух 23 отопителя в сборе с клапаном 2 стока воды. Выньте кожух 11 вентилятора в сборе с вентилятором и уплотнительным кольцом. Снимите защелки и отделите электродвигатель 9 с вентилятором от кожуха 11.
ПРИМЕЧАНИЕ: Для избежания нарушения балансировки не допускается снимать рабочее колесо вентилятора с вала электродвигателя.
Без крайней необходимости не рекомендуется снятие клапана 5 управления заслонкой 6 рециркуляции, заслонки 6 и водоотражательного щитка 4.
Для снятия заднего корпуса 8 воздухозаборника и заднего кожуха 14 радиатора отопителя потребуется снятие вакуумного усилителя тормозов, панели приборов, шумоизоляции щитка передка и вывертывания четырех винтов крепления.
Выверните винты крепления и снимите задний кожух 13 отопителя, выньте радиатор 16 и заслонку 10. Снимите крышку 21 кожуха радиатора, резистор 20, микромоторедуктор 19, опорную площадку 17 и рычаг 18 привода заслонки 12 управления отопителем. Выньте заслонку 12.
Для разборки воздуховодов и узлов управления отопителем снимите панель приборов. Основные воздуховоды (на рис. 8-24 показаны стрелками) выполнены в каркасе панели приборов, как одно целое. Для снятия воздуховода 24 обогрева ног выверните винты крепления и снимите воздуховоды 26 обогрева салона и облицовку 27 тоннеля пола. Выверните винты крепления воздуховода 24 и, отжав защелки в верхней части, отсоедините его от воздухораспределителя 20.
Выверните винты крепления воздухораспределителя 20 и снимите его с панели приборов, предварительно разъединив тяги привода заслонок.
Сборку выполняйте в обратном порядке. Перед сборкой осмотрите состояние корпусных деталей отопителя, их уплотнителей и уплотнителей заслонок. При необходимости уплотнители заслонок приклейте клеем 88 НП-35.
Обратите внимание на правильность установки уплотнительных прокладок и на надежность затягивания стяжных хомутов отопителя.
Залейте охлаждающую жидкость и проверьте герметичность соединений шлангов и работу отопителя.
Рис. 8-23. Детали отопителя: 1 — тройник; 2 — клапан стока воды; 3 — передний корпус воздухозаборника отопителя; 4 — водоотражательный щиток воздухозаборника; 5 — клапан управления заслонкой рециркуляции; 6 — заслонка рециркуляции воздухозаборника; 7 — гайки; 8 — задний корпус воздухозаборника отопителя; 9-электродвигатель отопителя; 10-заслонка канала отопителя; 11 — кожух вентилятора отопителя; 12 — заслонка управления отопителем; 13 — задний кожух отопителя; 14 — кожух радиатора отопителя; 15 — пароотводящий шланг; 16 — радиатор отопителя; 17 — опорная площадка рычага привода заслонки управления отопителем; 18 — рычаг привода заслонки управления отопителем; 19 — микромоторедуктор привода заслонки управления отопителем; 20 — резистор; 21 — крышка кожуха отопителя; 22 — шланги радиатора отопителя; 23 — передний кожух отопителя; 24 — шумоизоляционная правая обивка моторного отсека; 25 — электропневматический клапан; 26 — обратный клапан
Рис. 8-24. Отопитель с воздуховодами и деталями управления: 1 — рычаг привода лопаток центрального сопла; 2 — рычаг заслонки центрального сопла; 3-рычаг привода заслонки центрального сопла; 4 — промежуточный рычаг привода заслонки центрального сопла; 5 — корпус центральных сопел вентиляции салона; 6 — рычаг привода лопаток бокового сопла; 7 — рычаг заслонки бокового сопла; 8 — рычаг привода заслонки бокового сопла; 9 — промежуточный рычаг привода заслонки бокового сопла; 10 — корпус бокового сопла; 11 — заслонка бокового сопла; 12 — лопатки бокового сопла; 13 — боковое сопло; 14 — заслонка центрального сопла; 15 — кронштейн рычагов управления; 16 — центральное сопло; 17 — лопатки центрального сопла; 18 — сопла обогрева стекол передних дверей; 19 — рычаг управления системой отопления салона; 20 — корпус воздухораспределителя; 21 — заслонка обогрева ног; 22 — заслонка обогрева ветрового стекла; 23 — отопитель; 24 — воздуховод обогрева ног; 25 — боковое сопло вентиляции салона в сборе; 26 — воздуховоды обогрева салона; 27 — облицовка тоннеля пола
ARC 10 Температурный задатчик для контроллеров TC
Войдите в учётную запись, чтобы мы могли сообщить вам об ответе
Shuft ARC 10 Температурный задатчик для контроллеров TC
Задатчик температуры ARC-10 представляет собой дистанционный источник требуемой
температуры для контроллера и резистивный датчик температуры в помещении с характеристикой
NTC 12 кОм. Он предназначен для работы в помещении (без конденсата). На передней панели
устройства располагается потенциометр с возможностью настройки значений желаемой
температуры от 0 до 40ºС.
Недопустимо использование прибора в устройствах безопасности, предназначенных для защиты
людей, а также в качестве аварийного выключателя и другим подобным образом.
Принцип измерения температуры основан на зависимости электрического сопротивления
чувствительного элемента, находящегося в корпусе, от температуры.
Приборы необходимо защищать от перегрева.
Назначение температурного задатчика Shuft ARC 10
• Дистанционное задание требуемой температуры для контроллера и измерение текущей температуры в помещении.
Применение
• Совместно с контроллерами электронагревателей типа ТС в системах вентиляции, кондиционирования, отопления.
• Недопустимо использование в устройствах безопасности, предназначенных для защиты людей, а также в качестве аварийного выключателя и другим подобным образом.
Конструкция и материалы
• Корпус из пластика светлых тонов, современный дизайн.
• Резистивный датчик температуры в помещении с характеристикой NTC 12 кОм.
• Потенциометр настройки желаемой температуры.
Регулирование производительности
• Ручка настройки желаемой температуры от 0 до 40 °С на передней панели.
Монтаж
• Настенный.
Преимущества
• Высокая надежность.
• Простота использования.
Датчики температуры. Типы, устройство, принцип работы. Схемы подключения
Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.
Разновидности, устройство и принцип работы
В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.
В зависимости от принципа действия все датчики можно подразделить на:
Термоэлектрические
В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.
Рис. 1. Устройство термопары
На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1 ГОСТ Р 50342-92 они подразделяются на:
Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.
Полупроводниковые
Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).
Рис. 2. Подключение полупроводникового датчика через усилитель
Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т.д.
Пирометрические
Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.
Рис. 3. Принцип действия пирометрического датчика
Терморезистивные
Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.
Основным недостатком терморезистивного датчика является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.
Акустические
Рис. 4. Звуковой датчик температуры
Пьезоэлектрические
Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.
Схемы подключения
Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.
Рис. 5. Двухпроводная схема подключения
На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.
Рис. 6. Трехпроводная схема подключения
При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.
Рис. 7. Схема подключения датчика температуры двигателя
Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.
Рис. 8. Схема подключения цифрового датчика температуры
На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.
Примение
Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.
В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.
Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.
Как подобрать?
При выборе датчика температуры необходимо руководствоваться такими критериями:
Таблица: температурные пределы датчиков термоэлектрического типа