Замыкание на землю что это

Ток замыкания на землю: что это такое, путь протекания, величина, расчет, мера защиты

Определение понятия.

Ток замыкания на землю — это электрический ток, протекающий в землю, открытые и сторонние проводящие части и защитный проводник при повреждении изоляции части, находящейся под напряжением (согласно ГОСТ 30331.1-2013 [1]). В некоторой нормативной документации термин «ток замыкания на землю» имеет другое название «ток повреждения на землю».

В условиях повреждения возможно замыкание какой-то токоведущей части электроустановки здания на стороннюю проводящую часть здания. Из токоведущей части в стороннюю проводящую часть будет протекать электрический ток, который также является током замыкания на землю.

В своей книге [2] Харечко Ю.В. пишет о том, как возникает ток замыкания на землю:

« В аварийном режиме электроустановки здания из-за повреждения изоляции какой-то токоведущей части резко уменьшается сопротивление между этой токоведущей частью, с одной стороны, и открытой проводящей частью электрооборудования класса I и присоединенным к ней защитным проводником, сторонними проводящими частями, а также землей, с другой стороны. В результате этого резко увеличивается величина электрического тока, протекающего из токоведущей части в открытую проводящую часть электрооборудования класса I и присоединенный к ней защитный проводник, в сторонние проводящие части, в землю, а также в проводящие части, соединенные защитными проводниками с заземляющим устройством электроустановки здания и с заземленной токоведущей частью источника питания. »

Подобный электрический ток, протекающий в условиях единичного или множественных повреждений, в международной нормативной документации называют током повреждения на землю, а в национальной нормативной документации – током замыкания на землю.

Путь протекания.

О том по каким путям протекает ток замыкания на землю, наиболее полно, на мой взгляд, написал Ю.В. Харечко в своей книге [2]. Приведу основные цитаты:

« Путь, по которому может протекать ток замыкания на землю в системе распределения электроэнергии, зависит от типа заземления системы. Рассмотрим наиболее распространенную систему распределения электроэнергии, которая представляет собой электроустановку здания, подключенную к низковольтной распределительной электрической сети, состоящей из понижающей трансформаторной подстанции (ПС) и воздушной (ВЛ) или кабельной (КЛ) линии электропередачи. »

« Если произошло повреждение основной изоляции какой-либо опасной токоведущей части электрооборудования класса I и возникло ее замыкание на открытую проводящую часть, то в электроустановке здания, соответствующей типу заземления системы TT (рис. 1), ток замыкания на землю из токоведущей части протекает в открытую проводящую часть. Далее из открытой проводящей части по защитному проводнику, главной заземляющей шине, заземляющим проводникам и заземлителю электрический ток протекает в локальную землю. Через землю ток замыкания на землю протекает к заземлителю заземляющего устройства источника питания, которым является трансформатор, установленный в трансформаторной подстанции 10/0,4 кВ. К этому заземляющему устройству присоединена токоведущая часть источника питания, а именно – нейтраль понижающего трансформатора. »

« В электроустановке здания, соответствующей типу заземления системы IT, ток замыкания на землю из токоведущей части протекает в открытую проводящую часть. Далее из открытой проводящей части по защитному проводнику, главной заземляющей шине, заземляющим проводникам и заземлителю электрический ток протекает в локальную землю. Поскольку в системе IT нейтраль трансформатора, установленного в ПС, обычно изолирована от земли, ток замыкания на землю через землю и полные сопротивления фазных проводников относительно земли протекает в находящиеся под напряжением фазные проводники. »

На рисунке 1 показан путь протекания тока замыкания на землю в системе TT. На рисунке обозначено: 1 — заземляющее устройство источника питания; 2 — заземляющее устройство электроустановки здания; ПС — трансформаторная подстанция; ВЛ (КЛ) — воздушная (кабельная) линия электропередачи; Iз — ток замыкания на землю

Применительно к системам TT и IT можно говорить о «классическом» пути протекания «классического» тока замыкания на землю, а именно – из токоведущей части в землю.

Далее Харечко Ю.В. детализирует путь протекания тока замыкания на землю для случая, если электроустановка здания соответствует типам заземления системы TN [2]:

« Если электроустановка здания соответствует типам заземления системы TN-S, TN-C или TN-C-S (рис. 2), ток замыкания на землю из токоведущей части протекает в открытую проводящую часть электрооборудования класса I и присоединенные к ней защитные проводники электроустановки здания. Далее преобладающая доля тока замыкания на землю по PEN-проводникам низковольтной распределительной электрической сети протекает к заземленной нейтрали трансформатора. Одновременно незначительная доля тока замыкания на землю протекает в земле параллельно PEN-проводнику линии электропередачи между заземляющими устройствами электроустановки здания и источника питания. Указанный путь протекания тока замыкания на землю следует рассматривать в качестве характерного пути его протекания в системе TN-C-S. В системах TN-S и TN-C токи замыкания на землю протекают по аналогичным путям, которые различаются лишь видом защитных проводников, применяемых в электроустановках зданий и линиях электропередачи, соответствующих типам заземления системы TN-S и TN-C. »

Харечко Ю.В. подводит итог [2]:

« Таким образом, основные пути, по которым протекают токи замыкания на землю в системах TN, резко отличаются от «классических» путей их протекания в системах TT и IT. Однако эти искусственные проводящие пути созданы специально с целью многократного увеличения токов замыкания на землю в системах TN, по сравнению с аналогичным током в системе TT и тем более в системе IT. »

На рис. 2 показан путь протекания тока замыкания на землю в системе TN-C-S. Обозначения такие же как и на рисунке 1.

Харечко Ю.В. в своей книге [2] поясняет как протекает ток замыкания на землю аварийного электрооборудования классов 0, II и III:

« Токи замыкания на землю аварийного электрооборудования классов 0, II и III протекают по менее определенным проводящим путям, чем у электрооборудования класса I, например, через проводящую оболочку электрооборудования в землю или сторонние проводящие части. Причем частью этого проводящего пути может быть тело человека, который держит в руках переносное электрооборудование или находится в электрическом контакте с доступными проводящими частями передвижного или стационарного электрооборудования классов 0, II и III. Ток замыкания на землю может протекать через полы, стены и другие элементы здания, если они имеют незначительное сопротивление или по каким-то причинам (например, из-за повышенной влажности) их сопротивление резко уменьшилось, а также по иным заранее неизвестным проводящим путям. »

Величина.

В своей книге [2] и статье [4] Харечко Ю.В. подробно пишет о величине токов замыкания на землю в зависимости от типа заземления системы. Приведу основные цитаты:

« Величина тока замыкания на землю зависит от типа заземления системы, которому соответствует электроустановка здания. Наименьшие токи замыкания на землю (обычно до 1 А) имеют место в системах IT, в которых токоведущие части источников питания изолированы от земли или какие-то их токоведущие части соединены с землей через большие сопротивления. »

« Существенно бóльшие токи замыкания на землю (до нескольких десятков ампер) возникают в системах TT. Ток замыкания на землю здесь приблизительно равен частному от деления номинального фазного напряжения на сумму полных сопротивлений заземляющих устройств источника питания и электроустановки здания. »

« Очень большие токи замыкания на землю (до нескольких тысяч ампер), могут быть в электроустановках зданий, соответствующих типам заземления системы TN-C, TN-S и TN-C-S. Токи замыкания на землю в системах TN сопоставимы с токами однофазного короткого замыкания, поскольку фазный проводник замыкается на защитный проводник, PEN-проводник или комбинацию этих проводников, соединенных с заземленной токоведущей частью источника питания. »

Расчетная оценка тока замыкания на землю.

О том как правильно производить расчетную оценку токов замыкания на землю писал Харечко Ю.В. в своей книге [2]. Привожу основные цитаты:

« Для оценки токов замыкания на землю рассмотрим схемы замещения систем TT (рис. 3) и TN-C-S (рис. 4), которые соответственно представлены на рис. 1 и 2. В схемах замещения не показаны полные сопротивления источника питания и земли, поскольку они незначительно влияют на оценку токов замыкания на землю. Поскольку далее рассматриваются короткие замыкания на землю, в схемах замещения отсутствуют переходные сопротивления между фазными и защитными проводниками электроустановок зданий. »

На рисунке 3 приняты следующие обозначения:

« В системе TT ток замыкания на землю, генерируемый источником питания, протекает в замкнутом контуре, образованном полными сопротивлениями фазных проводников ВЛ или КЛ, фазных и защитных проводников электрических цепей электроустановки здания, а также полными сопротивлениями заземляющих устройств источника питания и электроустановки здания. Сумма полных сопротивлений заземляющих устройств источника питания ZЗУ ИП и электроустановки здания ZЗУ ЭЗ обычно многократно превышает сумму полных сопротивлений фазных и защитных проводников линии электропередачи и электроустановки здания. Поэтому ток замыкания на землю в системе TT можно приближенно определить по формуле:

где Uo – номинальное напряжение переменного или постоянного тока линейного проводника относительно земли, В. »

Если, например, номинальное напряжение электроустановки здания 230/400 В, полное сопротивление заземляющего устройства нейтрали трансформатора, установленного в ПС, равно 4 Ом, а полное сопротивление заземляющего устройства электроустановки здания – 10 Ом, то максимальное значение тока замыкания на землю будет приблизительно равно:

IEF ≈ 230 В / (4 + 10) Ом ≈ 16,4 А,

где 230 В – номинальное фазное напряжение.

« Если какая-то токоведущая часть источника питания в системе IT заземлена через сопротивление, ток замыкания на землю протекает по аналогичному проводящему пути. Его значение можно рассчитать по указанной выше формуле. Если в системе IT все токоведущие части изолированы от земли, ток замыкания на землю из земли протекает в фазные проводники через их емкостные сопротивления относительно земли. »

К обозначениям описанным для рисунка 3, на рисунке 4 добавлено следующее:

Для системы TN-C-S Харечко Ю.В. поясняет отдельно [2]:

« В системе TN-C-S преобладающая часть тока замыкания на землю протекает в замкнутом контуре, образованном полными сопротивлениями фазных проводников ВЛ или КЛ, фазных и защитных проводников электрических цепей электроустановки здания, а также полным сопротивлением PEN-проводника линии электропередачи. Сумма полных сопротивлений заземляющих устройств источника питания и электроустановки здания многократно превышает полное сопротивление PEN-проводника линии электропередачи. Поэтому частью тока замыкания на землю, который протекает через эти два сопротивления, включенные параллельно сопротивлению PEN-проводника, можно пренебречь. »

« Поскольку сечения и протяженности нейтральных и защитных проводников распределительных и конечных электрических цепей от вводных зажимов электроустановки здания до места замыкания на землю, как правило, равны, равны и полные сопротивления этих проводников. Поэтому максимальное значение тока замыкания на землю в системе TN-C-S равно току однофазного короткого замыкания между фазным и нейтральным проводниками в электрических системах переменного тока или току однополюсного короткого замыкания между полюсным и средним проводниками в электрических системах постоянного тока. »

Если электроустановка здания расположена близко к ПС и подключена к ней линией электропередачи, имеющей проводники большого сечения, или трансформаторная подстанция встроена в здание, при расчете токов короткого замыкания на землю следует учитывать сопротивление трансформатора.

Мера защиты.

О том, как защититься от токов замыкания на землю писал Харечко Ю.В. в своей книге [2]:

« Для защиты от поражения электрическим током в электроустановках зданий применяют специальную меру защиты – автоматическое отключение питания, ориентированную на распознавание токов замыкания на землю и отключение электрических цепей, в которых произошли замыкания на землю. В зависимости от типа заземления системы, которому соответствует электроустановка здания, отключение электрических цепей с аварийным электрооборудованием класса I выполняют с помощью различных защитных устройств. »

Электрический ток, протекающий через тело человека или животного в землю или проводящие части, электрически соединенные с землей, при его прикосновении к находящейся под напряжением токоведущей части или открытой проводящей части, является током замыкания на землю. Обнаружение и отключение подобного тока возможно с помощью устройства дифференциального тока. Практически все защитные устройства, которые отключают токи замыкания на землю, прямо или косвенно защищают людей и животных от поражения электрическим током в условиях повреждений.

Источник

Однофазные замыкания на землю. Компенсация емкостных токов замыкания на землю. ДГР

1. Основные характеристики ОЗЗ

В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.

Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.

Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это
Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ

Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.

На рис. 2 представлена векторная диаграмма напряжений.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это
Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ

При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.

2. Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

3. Расчет суммарного тока ОЗЗ

При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.

Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.

Выражение для определения тока ОЗЗ:

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это,

где С – суммарная емкость фазы всех ЛЕП, причем С = Суд l;
Суд – удельная емкость фазы сети относительно земли, Ф/км;
l – общая длина проводника одной фазы сети.

Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это,

Кроме этих методов для расчета суммарного тока ОЗЗ, можно использовать значения емкостных токов каждого кабеля взятых из справочной литературы.

4. Компенсационные меры защиты

Из-за распределённой по воздушным и кабельным линиям электропередач ёмкости, при ОЗЗ в месте повреждения протекает ёмкостный ток. В наиболее тяжелых случаях, возможно возникновение электрической дуги, горение которой может приводить к переходу ОЗЗ в двух- или трёхфазное замыкание и отключению линии релейной защитой. Вследствие этого потребитель электроэнергии может временно лишиться электроснабжения.

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.
Для предотвращения возникновения дуги и уменьшения емкостных токов применяют компенсацию емкостных токов. Значения емкостных токов, при превышении которых требуется компенсация согласно ПУЭ и ПТЭ, приведены табл. 1.

Таблица 1 – Значения токов требующие компенсации

Напряжение сети, кВ6102035
Емкостный ток, А30201510

При более низких уровнях токов считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.

5. Дугогасящий реактор

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это
Рисунок 3 – Дугогасящий реактор

Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

6. Основные характеристики ДГР

Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это

Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора

Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.

Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.

Источник

Замыкание на землю и короткое замыкание: в чем разница.

Перегоревшие предохранители и причины срабатывания автоматического выключателя могут быть вызваны разными неполадками в электросистеме. Ряд электрических проблем может вызвать один и тот же очевидный симптом: цепь, которая внезапно отключается и приводит к тому, что свет и приборы перестают работать. Две тесно связанные ситуации, которые могут вызвать эту проблему, это:

Существует большая путаница по поводу точной разницы между этими условиями, и даже профессиональные электрики иногда не соглашаются с точными определениями.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это

Короткое замыкание – что это.

Короткое замыкание — это любой электрический поток, выходящий за пределы предполагаемой цепи с небольшим сопротивлением этому потоку или вообще без него.

Причины возникновения короткого замыкания.

Обычная причина — оголенные провода, соприкасающиеся друг с другом, или оборванные соединения. Непосредственное воздействие состоит в том, что большое количество тока внезапно начинает течь.
Это, в свою очередь, приводит к отключению автоматического выключателя, мгновенно останавливая весь ток.

Это состояние и известно как «короткое замыкание», потому что ток проходит через проводку полной цепи и сразу же возвращается к источнику по более короткому пути.

Короткое замыкание для электриков.

Для электриков короткое замыкание обычно определяется как ситуация, в которой горячий провод (фаза) соприкасается с нейтральным проводом, например, когда провод отсоединяется от своего соединения и контактирует с нейтральным проводом.
Короткие замыкания могут возникать, когда изоляция проводов плавится и обнажает оголенные провода.

Чем опасно короткое замыкание и что оно может спровоцировать?

Основная опасность короткого замыкания — искрение, которое может возникнуть, когда электрический ток переходит с горячего провода на нейтраль.

Эта ситуация может легко вызвать пожары от электричества.

Короткие замыкания могут также возникать в проводке отдельных устройств, таких как лампы или другие подключаемые устройства. Изношенные или иным образом поврежденные электрические удлинители или шнуры прибора также могут вызвать короткое замыкание.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это

Как защититься от короткого замыкания.

Защита от коротких замыканий обеспечивается главным образом автоматическими выключателями, которые отключают цепь, когда ток начинает течь неконтролируемым образом.
В настоящее время обычно используется специальный тип автоматического выключателя, прерыватель цепи дуговой защиты. Он определяет искрение и отключает ток даже до того, как поток электричества перегружает УЗО.

Что же такое замыкание на землю?

Электрическая система может испытывать множество различных типов неисправностей, определенных как любой ненормальный поток электричества.

Замыкание на землю представляет собой тип замыкания, при котором непреднамеренный путь отклоняющегося электрического тока протекает непосредственно на землю.

Здесь также замыкание является «коротким», поскольку оно обошло проводку цепи, так что замыкание на землю технически можно определить как один тип короткого замыкания.

И, как и в случае любого короткого замыкания, непосредственное воздействие — это внезапное снижение сопротивления, которое вызывает беспрепятственный ток.
Как и другие типы короткого замыкания, замыкание на землю приводит к отключению автоматического выключателя из-за неконтролируемого потока.

Что значит замыкание на землю для электриков?

Но для электрика замыкание на землю обычно определяется как ситуация, когда горячий провод контактирует либо с заземляющим проводом, либо с заземленной частью системы, такой как металлическая электрическая коробка.

Поэтому электрики считают, что замыкание на землю отличается от короткого замыкания, хотя инженер-электрик воспринимает это несколько иначе.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что этоЗамыкание на землю в сети с заземленной нейтралью

В чем опасность замыканий на землю?

Основная опасность замыканий на землю заключается в вероятности удара током, если человек оказывается на пути с наименьшим сопротивлением заземлению.

Вот почему опасность шока гораздо более выражена в ситуациях, когда человек стоит на земле или во влажном месте.

Какая защита предусмотрена для таких замыканий.

Защиту от замыканий на землю обеспечивают автоматические выключатели, которые отключаются при внезапном увеличении потока электричества, а также система заземляющих проводов в цепях, обеспечивающих прямой путь назад к земле, в случае отклонения тока за пределы установленной проводной цепи.

Существуют также выходы прерывателя цепи замыкания на землю, которые можно использовать в ситуациях, когда замыкания на землю особенно вероятны, например, на открытом воздухе, вблизи сантехники и в местах ниже уровня грунта.

Распространенные причины коротких замыканий.

Замыкание на землю что это. Смотреть фото Замыкание на землю что это. Смотреть картинку Замыкание на землю что это. Картинка про Замыкание на землю что это. Фото Замыкание на землю что это
Распространенные причины неисправностей, приводящие к замыканию на землю.

Предотвращение коротких замыканий и замыканий на землю во время ремонта.

Как короткое замыкание, так и замыкание на землю могут произойти, если вы не отключите питание цепи перед началом работы с ней.

Оголенные провода могут неизбежно коснуться неправильных мест:

Чтобы избежать этих серьезных проблем, всегда выключайте цепь, прежде чем начинать работать над любой ее частью.
Соблюдайте технику безопасности при любой работе с электричеством! И пользуйтесь услугами электриков!

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *