Запускать в отдельной области памяти что это такое
Файл подкачки. Правильная настройка файла подкачки и его оптимальный размер.
Здравствуйте уважаемые читатели! Сегодня мы открываем цикл статей про оптимизацию компьютера на ОС Windows. Начнем мы с такой штуки как файл подкачки. В этой статье вы найдёте ответы на такие вопросы: Где находится файл подкачки?; Как правильно настроить файл подкачки?; Как задать оптимальный размер файла подкачки для разных объемов оперативной памяти?. Поехали!
Файл подкачки. Терминология.
Файл подкачки (pagefile.sys) — это системный файл на жестком диске (как правило на системном диске) компьютера, который служит как бы дополнением (расширением) к оперативной памяти. Также эту дополнительную память называют виртуальной памятью компьютера.
Виртуальная память — метод управления памятью компьютера для выполнения программ требующих большие объемы оперативной памяти, чем есть реально на компьютере. Недостающую оперативную память такие программы получают из файла подкачки. Другими словами, файл подкачки разгружает оперативную память в периоды её сильной загрузки.
Оперативная память в разы быстрее чем память файла подкачки. Если одновременно запустить несколько приложений в системе, которые потребляют много оперативной памяти, то данные неиспользуемых из них будут выгружены из оперативной памяти в менее быструю виртуальную память. Активные же приложения будут обслуживаться непосредственно оперативной памятью (RAM). Также, если например свернутое приложение развернуть, то данные из виртуальной памяти вновь перейдут в RAM.
Как настроить файл подкачки и изменить его размер?
Грамотная, правильная настройка файла подкачки поможет значительно ускорить работу компьютера. Этим грех было бы не воспользоваться. Где можно его настроить?
До пункта Быстродействие можно дойти также введя команду sysdm.cpl в командной строке Выполнить (командную строку можно открыть нажав WIN+R ).
Для отключения файла подкачки поставьте переключатель в пункт Без файла подкачки.
Размер файла подкачки Windows. Какой правильный?
Конечно, это субъективный взгляд и данные показатели не могут быть абсолютно точными, рекомендуемыми, но на практике именно они давали эффект. Вы можете сами поэкспериментировать и найти лучшее сочетание для вашего компьютера. Тут есть и некоторые примечания.
Правильное расположение файла подкачки. На каком диске включить?
Если у вас на компьютере несколько физических дисков, то устанавливать файл подкачки нужно на наиболее быстром диске. Считается, что файл подкачки делить на 2 части:
При этом система во время работы обращается к наименее загруженному разделу, не трогая первый.
Также рекомендуется, под файл подкачки создавать отдельный раздел, с объёмом памяти равной либо близкой размеру файла подкачки (например 2024мб). Эта хитрость позволяет избавиться от фрагментации данного файла.
Итоги:
Надеюсь приведенные в статье советы помогут вам правильно настроить файл подкачки на вашем компьютере и оптимизирует его работу. Если есть вопросы пишите в комментариях, постараюсь дать на них исчерпывающие ответы.
Организация памяти процесса
Управление памятью – центральный аспект в работе операционных систем. Он оказывает основополагающее влияние на сферу программирования и системного администрирования. В нескольких последующих постах я коснусь вопросов, связанных с работой памяти. Упор будет сделан на практические аспекты, однако и детали внутреннего устройства игнорировать не будем. Рассматриваемые концепции являются достаточно общими, но проиллюстрированы в основном на примере Linux и Windows, выполняющихся на x86-32 компьютере. Первый пост описывает организацию памяти пользовательских процессов.
Каждый процесс в многозадачной ОС выполняется в собственной “песочнице”. Эта песочница представляет собой виртуальное адресное пространство, которое в 32-битном защищенном режиме всегда имеет размер равный 4 гигабайтам. Соответствие между виртуальным пространством и физической памятью описывается с помощью таблицы страниц (page table). Ядро создает и заполняет таблицы, а процессор обращается к ним при необходимости осуществить трансляцию адреса. Каждый процесс работает со своим набором таблиц. Есть один важный момент — концепция виртуальной адресации распространяется на все выполняемое ПО, включая и само ядро. По этой причине для него резервируется часть виртуального адресного пространства (т.н. kernel space).
Это конечно не значит, что ядро занимает все это пространство, просто данный диапазон адресов может быть использован для мэппирования любой части физического адресного пространства по выбору ядра. Страницы памяти, соответствующие kernel space, помечены в таблицах страниц как доступные исключительно для привилегированного кода (кольцо 2 или более привилегированное). При попытке обращения к этим страницам из user mode кода генерируется page fault. В случае с Linux, kernel space всегда присутствует в памяти процесса, и разные процессы мэппируют kernel space в одну и ту же область физической памяти. Таким образом, код и данные ядра всегда доступны при необходимости обработать прерывание или системный вызов. В противоположность, оперативная память, замэппированная в user mode space, меняется при каждом переключении контекста.
Синим цветом на рисунке отмечены области виртуального адресного пространства, которым в соответствие поставлены участки физической памяти; белым цветом — еще не использованные области. Как видно, Firefox использовал большую часть своего виртуального адресного пространства. Все мы знаем о легендарной прожорливости этой программы в отношении оперативной памяти. Синие полосы на рисунке — это сегменты памяти программы, такие как куча (heap), стек и так далее. Обратите внимание, что в данном случае под сегментами мы подразумеваем просто непрерывные адресные диапазоны. Это не те сегменты, о которых мы говорим при описании сегментации в Intel процессорах. Так или иначе, вот стандартная схема организации памяти процесса в Linux:
Давным давно, когда компьютерная техника находилась в совсем еще младенческом возрасте, начальные виртуальные адреса сегментов были совершенно одинаковыми почти для всех процессов, выполняемых машиной. Из-за этого значительно упрощалось удаленное эксплуатирование уязвимостей. Эксплойту часто необходимо обращаться к памяти по абсолютным адресам, например по некоторому адресу в стеке, по адресу библиотечной функции, и тому подобное. Хакер, рассчитывающий осуществить удаленную атаку, должен выбирать адреса для обращения в слепую в расчете на то, что размещение сегментов программы в памяти на разных машинах будет идентичным. И когда оно действительно идентичное, случается, что людей хакают. По этой причине, приобрел популярность механизм рандомизации расположения сегментов в адресном пространстве процесса. Linux рандомизирует расположение стека, сегмента для memory mapping, и кучи – их стартовый адрес вычисляется путем добавления смещения. К сожалению, 32-битное пространство не очень-то большое, и эффективность рандомизации в известной степени нивелируется.
В верхней части user mode space расположен стековый сегмент. Большинство языков программирования используют его для хранения локальных переменных и аргументов, переданных в функцию. Вызов функции или метода приводит к помещению в стек т.н. стекового фрейма. Когда функция возвращает управление, стековый фрейм уничтожается. Стек устроен достаточно просто — данные обрабатываются в соответствии с принципом «последним пришёл — первым обслужен» (LIFO). По этой причине, для отслеживания содержания стека не нужно сложных управляющих структур – достаточно всего лишь указателя на верхушку стека. Добавление данных в стек и их удаление – быстрая и четко определенная операция. Более того, многократное использование одних и тех же областей стекового сегмента приводит к тому, что они, как правило, находятся в кеше процессора, что еще более ускоряет доступ. Каждый тред в рамках процесса работает с собственным стеком.
Возможна ситуация, когда пространство, отведенное под стековый сегмент, не может вместить в себя добавляемые данные. В результате, будет сгенерирован page fault, который в Linux обрабатывается функцией expand_stack(). Она, в свою очередь, вызовет другую функцию — acct_stack_growth(), которая отвечает за проверку возможности увеличить стековый сегмент. Если размер стекового сегмента меньше значения константы RLIMIT_STACK (обычно 8 МБ), то он наращивается, и программа продолжает выполняться как ни в чем не бывало. Это стандартный механизм, посредством которого размер стекового сегмента увеличивается в соответствии с потребностями. Однако, если достигнут максимально разрещённый размер стекового сегмента, то происходит переполнение стека (stack overflow), и программе посылается сигнал Segmentation Fault. Стековый сегмент может увеличиваться при необходимости, но никогда не уменьшается, даже если сама стековая структура, содержащаяся в нем, становиться меньше. Подобно федеральному бюджету, стековый сегмент может только расти.
Динамическое наращивание стека – единственная ситуация, когда обращение к «немэппированной» области памяти, может быть расценено как валидная операция. Любое другое обращение приводит к генерации page fault, за которым следует Segmentation Fault. Некоторые используемые области помечены как read-only, и обращение к ним также приводит к Segmentation Fault.
Под стеком располагается сегмент для memory mapping. Ядро использует этот сегмент для мэппирования (отображания в память) содержимого файлов. Любое приложение может воспользоваться данным функционалом посредством системного вызовома mmap() (ссылка на описание реализации вызова mmap) или CreateFileMapping() / MapViewOfFile() в Windows. Отображение файлов в память – удобный и высокопроизводительный метод файлового ввода / вывода, и он используется, например, для загрузки динамических библиотек. Существует возможность осуществить анонимное отображение в память (anonymous memory mapping), в результате чего получим область, в которую не отображен никакой файл, и которая вместо этого используется для размещения разного рода данных, с которыми работает программа. Если в Linux запросить выделение большого блока памяти с помощью malloc(), то вместо того, чтобы выделить память в куче, стандартная библиотека C задействует механизм анонимного отображения. Слово «большой», в данном случае, означает величину в байтах большую, чем значение константы MMAP_THRESHOLD. По умолчанию, это величина равна 128 кБ, и может контролироваться через вызов mallopt().
Кстати о куче. Она идет следующей в нашем описании адресного пространства процесса. Подобно стеку, куча используется для выделения памяти во время выполнения программы. В отличие от стека, память, выделенная в куче, сохранится после того, как функция, вызвавшая выделение этой памяти, завершится. Большинство языков предоставляют средства управления памятью в куче. Таким образом, ядро и среда выполнения языка совместно осуществляют динамическое выделение дополнительной памяти. В языке C, интерфейсом для работы с кучей является семейство функций malloc(), в то время как в языках с поддержкой garbage collection, вроде C#, основной интерфейс – это оператор new.
Если текущий размер кучи позволяет выделить запрошенный объем памяти, то выделение может быть осуществлено средствами одной лишь среды выполнения, без привлечения ядра. В противном случае, функция malloc() задействует системный вызов brk() для необходимого увеличения кучи (ссылка на описание реализации вызова brk). Управление памятью в куче – нетривиальная задача, для решения которой используются сложные алгоритмы. Данные алгоритмы стремятся достичь высокой скорости и эффективности в условиях непредсказуемых и хаотичных пэттернов выделения памяти в наших программах. Время, затрачиваемое на каждый запрос по выделению памяти в куче, может разительно отличаться. Для решения данной проблемы, системы реального времени используют специализированные аллокаторы памяти. Куча также подвержена фрагментированию, что, к примеру, изображено на рисунке:
Наконец, мы добрались до сегментов, расположенных в нижней части адресного пространства процесса: BSS, сегмент данных (data segment) и сегмент кода (text segment). BSS и data сегмент хранят данные, соответствующий static переменным в исходном коде на C. Разница в том, что в BSS хранятся данные, соответствующие неинициализированным переменным, чьи значения явно не указаны в исходном коде (в действительности, там хранятся объекты, при создании которых в декларации переменной либо явно указано нулевое значение, либо значение изначально не указано, и в линкуемых файлах нет таких же common символов, с ненулевым значением. – прим. перевод.). Для сегмента BSS используется анонимное отображение в память, т.е. никакой файл в этот сегмент не мэппируется. Если в исходном файле на C использовать int cntActiveUsers, то место под соответствующий объект будет выделено в BSS.
В отличии от BSS, data cегмент хранит объекты, которым в исходном коде соответствуют декларации static переменных, инициализированных ненулевым значением. Этот сегмент памяти не является анонимным — в него мэппируется часть образа программы. Таким образом, если мы используем static int cntWorkerBees = 10, то место под соответствующий объект будет выделено в data сегменте, и оно будет хранить значение 10. Хотя в data сегмент отображается файл, это т.н. «приватный мэппинг» (private memory mapping). Это значит, что изменения данных в этом сегменте не повлияют на содержание соответствующего файла. Так и должно быть, иначе присвоения значений глобальным переменным привели бы к изменению содержания файла, хранящегося на диске. В данном случае это совсем не нужно!
Мы можем посмотреть, как используются области памяти процесса, прочитав содержимое файла /proc/pid_of_process/maps. Обратите внимание, что содержимое самого сегмента может состоять из различных областей. Например, каждой мэппируемой в memory mapping сегмент динамической библиотеке отводится своя область, и в ней можно выделить области для BSS и data сегментов библиотеки. В следующем посте поясним, что конкретно подразумевается под словом “область”. Учтите, что иногда люди говорят “data сегмент”, подразумевая под этим data + BSS + heap.
Можно использовать утилиты nm и objdump для просмотра содержимого бинарных исполняемых образов: символов, их адресов, сегментов и т.д. Наконец, то, что описано в этом посте – это так называемая “гибкая” организация памяти процесса (flexible memory layout), которая вот уже несколько лет используется в Linux по умолчанию. Данная схема предполагает, что у нас определено значение константы RLIMIT_STACK. Когда это не так, Linux использует т.н. классическую организации, которая изображена на рисунке:
Ну вот и все. На этом наш разговор об организации памяти процесса завершен. В следующем посте рассмотрим как ядро отслеживает размеры описанных областей памяти. Также коснемся вопроса мэппирования, какое отношение к этому имеет чтение и запись файлов, и что означают цифры, описывающие использование памяти.
Анатомия программы в памяти
Управление памятью – одна из главных задач ОС. Она критична как для программирования, так и для системного администрирования. Я постараюсь объяснить, как ОС работает с памятью. Концепции будут общего характера, а примеры я возьму из Linux и Windows на 32-bit x86. Сначала я опишу, как программы располагаются в памяти.
Каждый процесс в многозадачной ОС работает в своей «песочнице» в памяти. Это виртуальное адресное пространство, которое в 32-битном режиме представляет собою 4Гб блок адресов. Эти виртуальные адреса ставятся в соответствие (mapping) физической памяти таблицами страниц, которые поддерживает ядро ОС. У каждого процесса есть свой набор таблиц. Но если мы начинаем использовать виртуальную адресацию, приходится использовать её для всех программ, работающих на компьютере – включая и само ядро. Поэтому часть пространства виртуальных адресов необходимо резервировать под ядро.
Это не значит, что ядро использует так много физической памяти – просто у него в распоряжении находится часть адресного пространства, которое можно поставить в соответствие необходимому количеству физической памяти. Пространство памяти для ядра отмечено в таблицах страниц как эксклюзивно используемое привилегированным кодом, поэтому если какая-то программа пытается получить в него доступ, случается page fault. В Linux пространство памяти для ядра присутствует постоянно, и ставит в соответствие одну и ту же часть физической памяти у всех процессов. Код ядра и данные всегда имеют адреса, и готовы обрабатывать прерывания и системные вызовы в любой момент. Для пользовательских программ, напротив, соответствие виртуальных адресов реальной памяти меняется, когда происходит переключение процессов:
Голубым отмечены виртуальные адреса, соответствующие физической памяти. Белым – пространство, которому не назначены адреса. В нашем примере Firefox использует гораздо больше места в виртуальной памяти из-за своей легендарной прожорливости. Полоски в адресном пространстве соответствуют сегментам памяти таким, как куча, стек и проч. Эти сегменты – всего лишь интервалы адресов памяти, и не имеют ничего общего с сегментами от Intel. Вот стандартная схема сегментов у процесса под Linux:
Когда программирование было белым и пушистым, начальные виртуальные адреса сегментов были одинаковыми для всех процессов. Это позволяло легко удалённо эксплуатировать уязвимости в безопасности. Зловредной программе часто необходимо обращаться к памяти по абсолютным адресам – адресу стека, адресу библиотечной функции, и т.п. Удаленные атаки приходилось делать вслепую, рассчитывая на то, что все адресные пространства остаются на постоянных адресах. В связи с этим получила популярность система выбора случайных адресов. Linux делает случайными стек, сегмент отображения в память и кучу, добавляя смещения к их начальным адресам. К сожалению, в 32-битном адресном пространстве особо не развернёшься, и для назначения случайных адресов остаётся мало места, что делает эту систему не слишком эффективной.
Самый верхний сегмент в адресном пространстве процесса – это стек, в большинстве языков хранящий локальные переменные и аргументы функций. Вызов метода или функции добавляет новый кадр стека (stack frame) к существующему стеку. После возврата из функции кадр уничтожается. Эта простая схема приводит к тому, что для отслеживания содержимого стека не требуется никакой сложной структуры – достаточно всего лишь указателя на начало стека. Добавление и удаление данных становится простым и однозначным процессом. Постоянное повторное использование районов памяти для стека приводит к кэшированию этих частей в CPU, что добавляет скорости. Каждый поток выполнения (thread) в процессе получает свой собственный стек.
Можно прийти к такой ситуации, в которой память, отведённая под стек, заканчивается. Это приводит к ошибке page fault, которая в Linux обрабатывается функцией expand_stack(), которая, в свою очередь, вызывает acct_stack_growth(), чтобы проверить, можно ли ещё нарастить стек. Если его размер не превышает RLIMIT_STACK (обычно это 8 Мб), то стек увеличивается и программа продолжает исполнение, как ни в чём не бывало. Но если максимальный размер стека достигнут, мы получаем переполнение стека (stack overflow) и программе приходит ошибка Segmentation Fault (ошибка сегментации). При этом стек умеет только увеличиваться – подобно государственному бюджету, он не уменьшается обратно.
Динамический рост стека – единственная ситуация, в которой может осуществляться доступ к свободной памяти, которая показана белым на схеме. Все другие попытки доступа к этой памяти вызывают ошибку page fault, приводящую к Segmentation Fault. А некоторые занятые области памяти служат только для чтения, поэтому попытки записи в эти области также приводят к Segmentation Fault.
После стека идёт сегмент отображения в память. Тут ядро размещает содержимое файлов напрямую в памяти. Любое приложение может запросить сделать это через системный вызов mmap() в Linux или CreateFileMapping() / MapViewOfFile() в Windows. Это удобный и быстрый способ организации операций ввода и вывода в файлы, поэтому он используется для подгрузки динамических библиотек. Также возможно создать анонимное место в памяти, не связанное с файлами, которое будет использоваться для данных программы. Если вы сделаете в Linux запрос на большой объём памяти через malloc(), библиотека C создаст такую анонимное отображение вместо использования памяти из кучи. Под «большим» подразумевается объём больший, чем MMAP_THRESHOLD (128 kB по умолчанию, он настраивается через mallopt().)
Сама куча расположена на следующих позициях в памяти. Она обеспечивает выделение памяти во время выполнения программы, как и стек – но, в отличие от него, хранит те данные, которые должны пережить функцию, размещающую их. В большинстве языков есть инструменты для управления кучей. В этом случае удовлетворение запроса на размещение памяти выполняется совместно программой и ядром. В С интерфейсом для работы с кучей служит malloc() с друзьями, а в языке, имеющем автоматическую сборку мусора, типа С#, интерфейсом служит ключевое слово new.
Если в куче оказывается недостаточно места для выполнения запроса, эту проблему может обработать сама программа без вмешательства ядра. В ином случае куча увеличивается системным вызовом brk(). Управление кучей – дело сложное, оно требует хитроумных алгоритмов, которые стремятся работать быстро и эффективно, чтобы угодить хаотичному методу размещению данных, которым пользуется программа. Время на обработку запроса к куче может варьироваться в широких пределах. В системах реального времени есть специальные инструменты для работы с ней. Кучи тоже бывают фрагментированными:
Пример данных на диаграмме будет немного сложнее, поскольку он использует указатель. В этом случае содержимое указателя, 4-байтный адрес памяти, живёт в сегменте данных. А строка, на которую он показывает, живёт в сегменте текста, который предназначен только для чтения. Там хранится весь код и разные другие детали, включая строковые литералы. Также он хранит ваш бинарник в памяти. Попытки записи в этот сегмент оканчиваются ошибкой Segmentation Fault. Это предотвращает ошибки, связанные с указателями (хотя не так эффективно, как если бы вы вообще не использовали язык С). На диаграмме показаны эти сегменты и примеры переменных:
Изучить области памяти Linux-процесса можно, прочитав файл /proc/pid_of_process/maps. Учтите, что один сегмент может содержать много областей. К примеру, у каждого файла, сдублированного в память, есть своя область в сегменте mmap, а у динамических библиотек – дополнительные области, напоминающие BSS и данные. Кстати, иногда, когда люди говорят «сегмент данных», они имеют в виду данные + bss + кучу.
Бинарные образы можно изучать при помощи команд nm и objdump – вы увидите символы, их адреса, сегменты, и т.п. Схема виртуальных адресов, описанная в этой статье – это т.н. «гибкая» схема, которая по умолчанию используется уже несколько лет. Она подразумевает, что переменной RLIMIT_STACK присвоено какое-то значение. В противном случае Linux использует «классическую» схему:
Запускать в отдельной области памяти что это такое
Одна из самых интересных и полезных функций Windows 10 — это приоритизация каждого запущенного процесса. Каждая программа, работающая в Windows, имеет уровень приоритета, который определяет, сколько ресурсов она будет потреблять при запуске нескольких программ. Что еще более полезно, так это то, что Windows 10 позволяет вам изменять приоритет запущенных процессов.
Допустим, бывают случаи, когда нам хочется выделить больше ОЗУ для определенного приложения. Выделив больше оперативной памяти для запущенного процесса, можно ускорить время преобразования видео, исправить отставание веб-браузера, ускорить работу программы и многое другое.
Также стоит отметить, что некоторые приложения и игры были предназначены для использования большего объема ОЗУ, поэтому выделение большего объема оперативной памяти для этих конкретных программ или игр позволит им работать без сбоев.
В этой статье мы поделимся подробным руководством о том, как выделить больше оперативной памяти для определенных приложений на компьютерах с Windows 10.
1. Использование диспетчера задач
Вы можете использовать диспетчер задач Windows 10 для определения приоритета определенных приложений. Если вы хотите выделить дополнительную оперативную память какому-либо конкретному приложению, вам необходимо повысить его приоритет в диспетчере задач. Для этого выполните несколько простых шагов, приведенных ниже.
Шаг 1. Прежде всего, щелкните правой кнопкой мыши на панели задач и выберите «Диспетчер задач».
Шаг 2. После того как откроется «Диспетчер задач», выберите вкладку «Подробности».
Шаг 3. На вкладке «Подробности» щелкните правой кнопкой мыши процесс, приоритет которого вы хотите повысить, и выберите параметр «Задать приоритет».
Шаг 4. Вы найдете несколько вариантов. Чтобы повысить приоритет, выберите что-либо выше обычного. Вы можете выбрать «Выше среднего», «Высокий» или «Реального времени».
Шаг 5. В поле подтверждения нажмите «Изменить приоритет».
Таким образом, вы можете использовать диспетчер задач, чтобы выделить больше оперативной памяти для определенных приложений в Windows 10.
2. Укажите объем оперативной памяти для каждой программы
В этом способе мы собираемся указать объем оперативной памяти для каждой программы. Этот метод работает со всеми приложениями, но для демонстрации мы использовали Adobe Photoshop.
Шаг 1. Прежде всего, щелкните правой кнопкой мыши ярлык приложения и выберите «Свойства».
Шаг 2. Теперь перейдите на вкладку «Ярлык».
Шаг 3. В поле «Объект» после .exe поставьте пробел, затем скопируйте и вставьте –disk-cache-size=1073741824. После этого нажмите «ОК».
Важно! При выполнении вышеуказанного действия для Adobe Photoshop будет выделено 1073741824 байта, эквивалентного 1 ГБ ОЗУ. Вы можете изменить размер, но объем ОЗУ должен быть в байтах.
Обычно Windows 10 неплохо справляется с управлением оперативной памятью. Система хорошо знает, сколько памяти выделить каждому приложению. Выделение слишком большого объема оперативной памяти для любого приложения может привести к сбою других приложений или появлению некоторых ошибок.