Зимой рельсы охлаждаются и их длина становится меньше это происходит потому что
№ 54 Сборник задач по физике 7-9 класс Лукашик. Почему уменьшается длина рельса?
Помогите ответить!
Почему уменьшается длина рельса при его охлаждении?
Расстояние между ее молекулами уменьшается.
Попробуйте провести следующий опыт. Приготовление раствора
сахара и расчёт его массовой доли в растворе.
Отмерьте мерным ( Подробнее. )
Привет. Выручайте с ответом по физике…
Поплавок со свинцовым грузилом внизу опускают
сначала в воду, потом в масло. В обоих ( Подробнее. )
Привет всем! Нужен ваш совет, как отвечать…
Изобразите силы, действующие на тело, когда оно плавает на поверхности жидкости. ( Подробнее. )
Изменение длины рельсов при колебаниях их температуры
Если положить рельс длиной L на ролики или специальные подкладки с очень низким коэффициентом трения, то можно считать, что свободному удлинению рельса ничто не препятствует.
?tр — изменение температуры рельса, °С,
Таким образом, при изменении температуры свободно лежащего рельса длиной 985,50 м на 7 °С его длина увеличилась на 80 мм. В этом случае ничто не препятствовало этому изменению и напряженное состояние рельса не возникло.
Однако в пути рельс лежит на металлических подкладках, прикреплен к каждой шпале мощным промежуточным скреплением, а с соседним рельсом соединен стыковым скреплением, поэтому изменение длины рельса в реальных условиях не может происходить так свободно. Изменение длины рельсовой плети в зависимости от температуры описывается более сложным законом, учитывающим преодоление погонных и стыковых сопротивлений.
Рассмотрим другой крайний случай. Допустим, что рельс жестко закреплен по концам и вообще его длина постоянна. Изменение температуры рельса, которое не может повлиять на его длину, вызывает в нем температурные напряжения, а они согласно закону Гука пропорциональны величине несостоявшегося температурного удлинения (укорочения) рельса и противоположны ему по знаку. Другими словами, если рельс при повышении его температуры не смог удлиниться, то в нем возникли температурные напряжения сжатия; если рельс при понижении его температуры не смог укоротиться, то в нем возникли температурные напряжения растяжения.
Температурные напряжения, возникающие в рельсе, если его длина сохраняется при изменении температуры относительно нейтральной, могут быть определены по формуле
где Е — модуль упругости рельсовой стали, Е = 2,1?10 6 кг/см = 21?10 4 МПа;
?L/L — несостоявшееся относительное удлинение рельса.
Продольная температурная сила, сжимающая или растягивающая (в зависимости от направления изменения его температуры) рельс, может быть определена по формуле
Сформулируем одно из основных положений температурной работы рельсов.
Если рельс не может изменять длину при колебаниях своей температуры, то в нем возникают температурные силы Рt, прямо пропорциональные изменению температуры рельса относительно нейтральной температуры и не зависящие от длины рельса L.
Другими словами — величины температурных продольных сил в рельсе, который не может изменять свою длину, от длины рельса не зависят.
А если бы были уложены с нулевыми стыковыми зазорами рельсы длиной 50 (рельсы р-50) или 100 м? Продольная сжимающая температурная сила в рельсе в условиях примера не изменилась бы и составила также 620250 Н, или около
63248 кг, где 1 кг = 9,80665 Н.
Нами рассмотрены предельные случаи — рельс имеет полную свободу перемещений или не имеет возможности изменять свою длину вообще. А как изменяет свою длину рельс в зависимости от температуры в реальных условиях?
В таких условиях это сопровождается преодолением сопротивлений, возникающих как за счет действия сил трения при перемещении рельсов по подкладкам шпал или рельсов со шпалами в балласте, а также концов рельсов в стыке.
В дальнейшем будем исходить из упрощенной схемы, когда силы сопротивления продольному смещению рельса, возникающие за счет действия сил трения при перемещении рельсов по подкладкам шпал, или всей
путевой решетки в балласте, равномерно распределены по всей длине рельса и не зависят от величины температурного изменения длины рельса. Эти силы сопротивления называют погонными и обозначают буквой q.
где R — величина стыкового сопротивления, кг.
Пример 1.4. Рельсы Р65 длиной 25 м уложены при нейтральной температуре 18 °С со стыковыми зазорами 12 мм. Для таких рельсов при стандартной затяжке стыковых болтов можно принять величину сопротивления стыка R = 100000 Н. Насколько должна измениться температура рельса, чтобы стыковое сопротивление было преодолено?
Если температура рельса повысится и превзойдет 23 оС, то начнется перемещение концов рельса в пределах стыкового зазора и преодоление погонного сопротивления этому перемещению. При этом одновременно будет изменяться длина рельса и его напряженное состояние. Поскольку в примере рассматривается рельс стандартной длины (25 м), то перемещения рельса такой относительно небольшой длины будут происходить в основном в пределах стыкового зазора.
На рис. 1.1 показано распределение продольных сил, возникающих в рельсах длиной L при изменении температуры рельса.
Рис. 1.1. Распределение продольных температурных напряжений по длине рельса:
L — общая длина рельса; x — длина подвижной части рельса; (L – 2x) — неподвижная часть рельса; R — стыковое сопротивление
При постоянном по длине рельса погонном сопротивлении p на длине рельса x возникает погонное сопротивление px, которое равномерно изменяется до нуля в конце рельса.
В сечениях А и Б возникнут напряжения ?t = px/F. В промежутке между этими сечениями рельс не испытывает деформаций и работает как рельс, жестко закрепленный по концам (см. формулу (1.3)). Длина активного концевого участка x может быть найдена из выражения
Наибольшее изменение температуры, при котором полностью преодолеваются погонные сопротивления и продольные деформации распространяются по всей длине рельса, равно
Рассмотрим общий случай изменения длины L рельса типа Р-65, закрепленного на постоянный режим работы при температуре to.
Пример 1.5. Рельсовая плеть длиной L = 1200 м закреплена для работы в постоянном режиме при to= 21 °С. Уравнительный пролет состоит из трех пар уравнительных рельсов длиной по 12,5 м. Величина стыкового зазора 1,2 см.
Определим длину участка продольной деформации рельса при повышении его температуры относительно нейтральной to на 28 °С.
Примем стыковое сопротивление R = 100000 Н, а погонное сопротивление р = 80 Н/см. Тогда
Смещение конца рельса при такой температуре после преодоления стыкового сопротивления равно
На неподвижной части рельса, сколь велика бы она ни была (хоть 100 км!), величина продольных температурных сил, определяемых по формуле (1.4), будет зависеть только от разности температур рельса и
закрепления to.
Допустим, что температура рельса зимой достигла величины –42 °С (такая температура является расчетной для Москвы). Тогда при температуре закрепления плети +21 °С продольная растягивающая рельс температурная сила
Знак минус показывает, что в рельсе действует растягивающая сила.
При экстремальной зимней температуре рельса –42 oС растягивающая рельс сила превысила 132 т!
Выдержит ли рельс такую растягивающую силу?
Изменяя температуру закрепления рельса на постоянный режим, можно регулировать величину продольной температурной сжимающей силы.
Если в условиях примера закрепить рельс не при +21 °С, а при +40 °С, то продольная сжимающая рельс сила летом при максимальной температуре составит всего
По обоим рельсам продольная сжимающая сила составит около 76 т.
Тогда зимой при самой низкой для Москвы температуре рельса –42 °С растягивающая его сила составит уже
Как найти компромисс между величинами максимальных сжимающих и растягивающих сил? Об этом поговорим в разделе 3. Пока же отметим, что проведенные расчеты еще раз показали важность правильного определения температуры закрепления рельсов на постоянный режим, а также важность правильного определения нейтральной температуры.
Физические пределы изменения температур рельсов в каждом регионе сети железных дорог ограничены. В «Технических указаниях по устройству, укладке, содержанию и ремонту бесстыкового пути» приведены расчетные температуры рельсов для сети железных дорог России.
В качестве примера приведем расчетные значения температур рельсов для некоторых станций Московской железной дороги.
Таким образом, путевую решетку сжимает продольная температурная сила более 185 т.
Какими же должны быть конструкция и мощность железнодорожного пути, чтобы выдержать такую сжимающую силу? Об этом поговорим в разделе 2.
Сейчас сделаем попытку ответить на вопрос, почему в тексте этого раздела рельсы назывались то рельсы нормальной (стандартной) длины, то длинные рельсы, то рельсовые плети, то бесстыковые плети и какова разница между этими понятиями?
Тепловые явления
Тепловые явления всегда связаны с охлаждением или нагреванием, плавлением или отвердеванием, т. е. с изменением температуры.
Тепловые явления в жизни
С тепловыми явлениями мы сталкиваемся ежедневно и вряд ли каждый раз задумываемся над превращениями, сопровождающих эти процессы. Например, просматривая прогноз погоды, мы думаем лишь о выборе подходящих одежды и обуви. Чтобы выпить горячий чай или кофе, мы нагреваем воду в чайнике.
Кладем мокрые вещи на горячую батарею, зная, что через несколько часов все высохнет, и т.д. И это только дома.
Трудно переоценить значимость тепловых явлений в нашей жизни: это плавление металла, сгорание топлива, изготовление новых материалов, создание тепловых двигателей и многое другое.
Почему железная дорога длиннее летом?
Этот вопрос может показаться тебе довольно странным, но длина железной дороги, точнее, ее рельсового пути, действительно увеличивается летом. Почему так происходит?
Тем не менее говоря о том, что летом железная дорога длиннее, следует понимать, что на самом деле речь идет не об удлинении маршрута между городами, а всего лишь об увеличении общей суммы длин всех рельсов.
Посмотри внимательно на картинку справа. Железнодорожные рельсы специально укладывают так, чтобы между их стыками оставался небольшой зазор. Именно этот промежуток и рассчитан на увеличение длины рельсов при нагревании. Иногда его так и называют — «тепловой зазор».
Теперь понятно, что за счет общей длины всех зазоров и происходит увеличение длин рельсов при нагревании!
Почему между трамвайными рельсами не оставляют зазоры?
Трамвайные рельсы действительно укладывают, не оставляя никаких зазоров. Почему? Сравни картинки.
Трамвайные рельсы почти полностью опускают в землю: на поверхности остается только верхняя часть полотна. Поэтому можно с уверенностью говорить о том, что земля «спасает» рельсы от перегрева даже в самые жаркие дни. А так как трамвайные рельсы не перегреваются, то и их длина, в отличие от железнодорожных, практически не меняется. Поэтому между трамвайными рельсами и не оставляют зазоров.
Почему летом провода линий электропередачи немного провисают?
Действительно, провода линий электропередачи слегка провисают в теплое время года. Это не ошибка монтажников, а преднамеренное действие. Объяснить данное явление довольно просто. Ты уже знаешь, что при нагревании тела расширяются, а при охлаждении — сжимаются. Если сильно натянуть провод, то, охлаждаясь (это может случиться не только зимой, но и во время прохладных ночей в межсезонье и даже летом), он становится короче и может лопнуть.
Почему на трубопроводах делают изгибы?
Скорее всего, ты не раз видел наземные трубопроводы, в которых через определенные промежутки есть специальные изгибы в виде буквы П.
Такие изгибы сделаны не случайно. В связи с резкими перепадами температуры трубопроводы способны удлиняться и расширяться. На прямом участке такие изменения могут привести к серьезным деформациям. Поэтому и делают изгибы, чтобы компенсировать эту нагрузку.
Как правильно охладить продукты при помощи льда?
Представь, что тебе нужно охладить лимонад при помощи кубиков льда, замороженных в специальной форме, но бросать их внутрь нельзя. Как ты поступишь? Поставишь кувшин на форму со льдом? Или наоборот, форму на горлышко кувшина? Более удобным кажется первый вариант, т.е. поставить кувшин на лед. Однако правильным с точки зрения физики является второй. Конечно, это вовсе не означает, что охладить лимонад в кувшине, поставив его на лед, нельзя. Можно, но в данном случае охладится только нижний слой напитка.
Поэтому если нужно охладить всю жидкость, то лед следует положить сверху. Объяснение этому правилу довольно простое: охлажденный льдом воздух опускается вниз, постепенно охлаждая сосуд.
Почему зимой мы носим теплую одежду?
Единственный правильный ответ на этот вопрос только один: потому что зимой холодно, и мы не хотим мерзнуть. А ты уверен, что именно одежда нас греет? Чтобы убедиться, так ли это на самом деле, ты можешь проделать следующий эксперимент.
Тебе понадобятся любая теплая куртка или пальто (желательно пуховик), которые ты носишь зимой, кубики льда и два небольших полиэтиленовых пакета. Итак, в оба пакета положи одинаковое количество кубиков льда и завяжи. Один пакет оставь на столе, а второй тщательно заверни в зимнюю куртку. Когда лед в первом пакете начнет таять, вытащи второй пакет со льдом из куртки. Что произошло со льдом во втором пакете? Лед даже и не начал таять! На этом опыте ты наглядно убедился в том, что зимняя одежда абсолютно не греет. На самом деле она просто сохраняет температуру. Завернутый в куртку лед практически не растаял, и это значит, что его температура осталась прежней. И когда мы надеваем зимнюю одежду, она не греет — она не дает нашему телу охладиться, т. е. сохраняет его температуру.
Почему стаканы из толстого стекла лопаются чаще, чем из тонкого?
Это действительно так: стаканы из тонкого стекла более устойчивы к горячей воде, чем из толстого.
Казалось бы, где логика? Но в данном случае нужно учитывать законы физики. Основная причина того, что стекло лопается, заключается в его неравномерном расширении. Когда мы наливаем кипяток в стакан, то сначала прогреваются его внутренние стенки. А внешние стенки по-прежнему остаются недостаточно нагретыми и не выдерживают давления перегретого внутреннего слоя. В этот момент и происходит лопание стекла.
Теперь ты понял, почему толстое стекло чаще лопается, чем тонкое? Стенки стакана из тонкого стекла успевают прогреться гораздо быстрее. Это означает, что в стакане с тонкими стенками быстрее устанавливается одинаковая температура внутреннего и внешнего слоев стекла. А в стакане из толстого стекла все эти процессы протекают настолько медленнее, что оно не успевает прогреться и лопается.
Лабораторная посуда
Обрати внимание на стеклянную посуду, которую используют в лабораториях: она вся из очень тонкого стекла. Причем воду кипятят именно в таких сосудах, совершенно не опасаясь, что они лопнут прямо во время проведения исследования.
Теплопередача
Тот, кто хоть раз в жизни получал ожог, знает о нем не понаслышке. Способов обжечься довольно много. Например, можно нечаянно дотронуться до раскаленной сковородки, гриля или формы с пирогом, который только что достали из духовки. Можно обжечься паром кипящей воды или очень горячим воздухом из фена. А можно просто лежать под палящим солнцем и получить ожог кожи. Все эти примеры указывают на разные способы передачи тепла от более горячего тела к более холодному.
Способы теплопередачи. Теплопроводность
Существуют различные способы передачи тепла: теплопроводность, конвекция и излучение.
Главное их отличие заключается в способе передачи тепла.
При теплопроводности передача тепла происходит при непосредственном контакте. Например, во время приготовления пищи нагретая плита передает тепло сковороде или кастрюле.
Конвекция и излучение
Для возникновения конвекции необходимо движение воздуха или воды. Конвекция — это передача тепла потоками жидкости или газа.
Наглядный пример конвекции — обогрев наших домов от батарей. Теплый воздух поднимается к потолку и равномерно распределяется по всей комнате. Охлаждаясь, воздух опускается. Потом процесс повторяется снова. Такая циркуляция воздуха и называется конвекцией.
Тепловое излучение — это передача тепла от одного тела к другому электромагнитными волнами. Именно так попадает на Землю тепло от Солнца. При тепловом излучении нет необходимости в прямом контакте или наличии потоков жидкости или газа.
Почему в окнах двойные стекла?
Ты уже знаешь, что передача тепла происходит от более горячего тела к более холодному. Но у различных материалов разная способность передавать тепло, или разная теплопроводность. У дерева, стекла и воды она очень низкая.
Окна делают из двух и более стекол, скрепленных между собой, с целью увеличения их теплоизоляционных свойств. Пространство между стеклами заполняется воздухом, теплопроводность которого в 40 раз меньше, чем у стекла. Типичная конструкция окон «стекло—воздух—стекло» позволяет лучше сохранить тепло в наших домах.
Почему в снежную зиму деревья не вымерзают?
В снежную зиму земля надежно защищена от промерзания. Как бы странно это ни звучало, но снег очень хорошо греет землю. А происходит это потому, что снег содержит воздух и является очень плохим проводником тепла. Почва не промерзает, и корни деревьев остаются в тепле.
Почему зимой мерзнут ноги в очень тесной обуви?
Это происходит потому, что в тесной обуви воздушная прослойка между ногой и сапогом или ботинком очень мала. Так как воздух — плохой проводник тепла, достаточный слой воздуха между ногой и обувью защитил бы от замерзания. Именно поэтому зимой нужно носить просторную обувь.
Почему мы не обжигаем губы и рот, когда пьем из фарфоровой чашки?
Скорее всего, ты не раз наблюдал такую картину: фарфоровая чашка, в которую только что налили кипяток, не настолько горячая, чтобы ее невозможно было взять в руки. А что произойдет, если налить воду такой же температуры в металлическую чашку? Сможешь ли ты удержать эту чашку в руке, уже не говоря о том, чтобы прикоснуться к ней губами? Металлическая чашка моментально нагревается до такой степени, что в руки ты ее не возьмешь.
Объяснением этому является разная теплопроводность фарфора и металла: у фарфора она существенно ниже.
Изменение длины рельсов при колебаниях их температуры
Если положить рельс длиной L на ролики или специальные подкладки с очень низким коэффициентом трения, то можно считать, что свободному удлинению рельса ничто не препятствует.
?tр — изменение температуры рельса, °С,
Таким образом, при изменении температуры свободно лежащего рельса длиной 985,50 м на 7 °С его длина увеличилась на 80 мм. В этом случае ничто не препятствовало этому изменению и напряженное состояние рельса не возникло.
Однако в пути рельс лежит на металлических подкладках, прикреплен к каждой шпале мощным промежуточным скреплением, а с соседним рельсом соединен стыковым скреплением, поэтому изменение длины рельса в реальных условиях не может происходить так свободно. Изменение длины рельсовой плети в зависимости от температуры описывается более сложным законом, учитывающим преодоление погонных и стыковых сопротивлений.
Рассмотрим другой крайний случай. Допустим, что рельс жестко закреплен по концам и вообще его длина постоянна. Изменение температуры рельса, которое не может повлиять на его длину, вызывает в нем температурные напряжения, а они согласно закону Гука пропорциональны величине несостоявшегося температурного удлинения (укорочения) рельса и противоположны ему по знаку. Другими словами, если рельс при повышении его температуры не смог удлиниться, то в нем возникли температурные напряжения сжатия; если рельс при понижении его температуры не смог укоротиться, то в нем возникли температурные напряжения растяжения.
Температурные напряжения, возникающие в рельсе, если его длина сохраняется при изменении температуры относительно нейтральной, могут быть определены по формуле
где Е — модуль упругости рельсовой стали, Е = 2,1?10 6 кг/см = 21?10 4 МПа;
?L/L — несостоявшееся относительное удлинение рельса.
Продольная температурная сила, сжимающая или растягивающая (в зависимости от направления изменения его температуры) рельс, может быть определена по формуле
Сформулируем одно из основных положений температурной работы рельсов.
Если рельс не может изменять длину при колебаниях своей температуры, то в нем возникают температурные силы Рt, прямо пропорциональные изменению температуры рельса относительно нейтральной температуры и не зависящие от длины рельса L.
Другими словами — величины температурных продольных сил в рельсе, который не может изменять свою длину, от длины рельса не зависят.
А если бы были уложены с нулевыми стыковыми зазорами рельсы длиной 50 (рельсы р-50) или 100 м? Продольная сжимающая температурная сила в рельсе в условиях примера не изменилась бы и составила также 620250 Н, или около
63248 кг, где 1 кг = 9,80665 Н.
Нами рассмотрены предельные случаи — рельс имеет полную свободу перемещений или не имеет возможности изменять свою длину вообще. А как изменяет свою длину рельс в зависимости от температуры в реальных условиях?
В таких условиях это сопровождается преодолением сопротивлений, возникающих как за счет действия сил трения при перемещении рельсов по подкладкам шпал или рельсов со шпалами в балласте, а также концов рельсов в стыке.
В дальнейшем будем исходить из упрощенной схемы, когда силы сопротивления продольному смещению рельса, возникающие за счет действия сил трения при перемещении рельсов по подкладкам шпал, или всей
путевой решетки в балласте, равномерно распределены по всей длине рельса и не зависят от величины температурного изменения длины рельса. Эти силы сопротивления называют погонными и обозначают буквой q.
где R — величина стыкового сопротивления, кг.
Пример 1.4. Рельсы Р65 длиной 25 м уложены при нейтральной температуре 18 °С со стыковыми зазорами 12 мм. Для таких рельсов при стандартной затяжке стыковых болтов можно принять величину сопротивления стыка R = 100000 Н. Насколько должна измениться температура рельса, чтобы стыковое сопротивление было преодолено?
Если температура рельса повысится и превзойдет 23 оС, то начнется перемещение концов рельса в пределах стыкового зазора и преодоление погонного сопротивления этому перемещению. При этом одновременно будет изменяться длина рельса и его напряженное состояние. Поскольку в примере рассматривается рельс стандартной длины (25 м), то перемещения рельса такой относительно небольшой длины будут происходить в основном в пределах стыкового зазора.
На рис. 1.1 показано распределение продольных сил, возникающих в рельсах длиной L при изменении температуры рельса.
Рис. 1.1. Распределение продольных температурных напряжений по длине рельса:
L — общая длина рельса; x — длина подвижной части рельса; (L – 2x) — неподвижная часть рельса; R — стыковое сопротивление
При постоянном по длине рельса погонном сопротивлении p на длине рельса x возникает погонное сопротивление px, которое равномерно изменяется до нуля в конце рельса.
В сечениях А и Б возникнут напряжения ?t = px/F. В промежутке между этими сечениями рельс не испытывает деформаций и работает как рельс, жестко закрепленный по концам (см. формулу (1.3)). Длина активного концевого участка x может быть найдена из выражения
Наибольшее изменение температуры, при котором полностью преодолеваются погонные сопротивления и продольные деформации распространяются по всей длине рельса, равно
Рассмотрим общий случай изменения длины L рельса типа Р-65, закрепленного на постоянный режим работы при температуре to.
Пример 1.5. Рельсовая плеть длиной L = 1200 м закреплена для работы в постоянном режиме при to= 21 °С. Уравнительный пролет состоит из трех пар уравнительных рельсов длиной по 12,5 м. Величина стыкового зазора 1,2 см.
Определим длину участка продольной деформации рельса при повышении его температуры относительно нейтральной to на 28 °С.
Примем стыковое сопротивление R = 100000 Н, а погонное сопротивление р = 80 Н/см. Тогда
Смещение конца рельса при такой температуре после преодоления стыкового сопротивления равно
На неподвижной части рельса, сколь велика бы она ни была (хоть 100 км!), величина продольных температурных сил, определяемых по формуле (1.4), будет зависеть только от разности температур рельса и
закрепления to.
Допустим, что температура рельса зимой достигла величины –42 °С (такая температура является расчетной для Москвы). Тогда при температуре закрепления плети +21 °С продольная растягивающая рельс температурная сила
Знак минус показывает, что в рельсе действует растягивающая сила.
При экстремальной зимней температуре рельса –42 oС растягивающая рельс сила превысила 132 т!
Выдержит ли рельс такую растягивающую силу?
Изменяя температуру закрепления рельса на постоянный режим, можно регулировать величину продольной температурной сжимающей силы.
Если в условиях примера закрепить рельс не при +21 °С, а при +40 °С, то продольная сжимающая рельс сила летом при максимальной температуре составит всего
По обоим рельсам продольная сжимающая сила составит около 76 т.
Тогда зимой при самой низкой для Москвы температуре рельса –42 °С растягивающая его сила составит уже
Как найти компромисс между величинами максимальных сжимающих и растягивающих сил? Об этом поговорим в разделе 3. Пока же отметим, что проведенные расчеты еще раз показали важность правильного определения температуры закрепления рельсов на постоянный режим, а также важность правильного определения нейтральной температуры.
Физические пределы изменения температур рельсов в каждом регионе сети железных дорог ограничены. В «Технических указаниях по устройству, укладке, содержанию и ремонту бесстыкового пути» приведены расчетные температуры рельсов для сети железных дорог России.
В качестве примера приведем расчетные значения температур рельсов для некоторых станций Московской железной дороги.
Таким образом, путевую решетку сжимает продольная температурная сила более 185 т.
Какими же должны быть конструкция и мощность железнодорожного пути, чтобы выдержать такую сжимающую силу? Об этом поговорим в разделе 2.
Сейчас сделаем попытку ответить на вопрос, почему в тексте этого раздела рельсы назывались то рельсы нормальной (стандартной) длины, то длинные рельсы, то рельсовые плети, то бесстыковые плети и какова разница между этими понятиями?