Знак включения в математике что означает

Обозначение, запись и изображение числовых множеств

Из большого количества разнообразных множеств особо интересными и важными являются числовые множества, т.е. те множества, элементами которых служат числа. Очевидно, что для работы с числовыми множествами необходимо иметь навык записи их, а также изображения их на координатной прямой.

Запись числовых множеств

N – множество всех натуральных чисел; Z – множество целых чисел; Q – множество рациональных чисел; J – множество иррациональных чисел; R – множество действительных чисел; C – множество комплексных чисел.

Напомним также следующие обозначения:

Рассмотрим теперь схему описания числовых множеств на примере основных стандартных случаев, наиболее часто используемых на практике.

Таким же образом, объединяя различные числовые промежутки и множества отдельных чисел, возможно дать описание любому числовому множеству, состоящему из действительных чисел. На основе сказанного становится понятно, для чего вводятся различные виды числовых промежутков, такие как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч. Все эти виды промежутков совместно с обозначениями множеств отдельных чисел дают возможность через их объединение описать любое числовое множество.

Изображение числовых множеств на координатной прямой

В практических примерах удобно использовать геометрическое толкование числовых множеств – их изображение на координатной прямой. К примеру, такой способ поможет при решении неравенств, в которых нужно учесть ОДЗ – когда нужно отобразить числовые множества, чтобы определить их объединение и/или пересечение.

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Зачастую и не указывают начало отсчета и единичный отрезок:

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

В большинстве случаев возможно не соблюдать абсолютную точность чертежа: вполне достаточно схематичного изображения без соблюдения масштаба, но с сохранением взаимного расположения точек относительно друг друга, т.е. любая точка с бОльшей координатой должна быть правее точки с меньшей. С учётом сказанного уже имеющийся чертеж может выглядеть так:

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Отдельно из возможных числовых множеств выделяют числовые промежутки интервалы, полуинтервалы, лучи и пр.)

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Информация, приведенная в данной статье, призвана помочь получить навык видеть запись и изображение числовых множеств так же легко, как и отдельных числовых промежутков. В идеале записанное числовое множество сразу должно представляться в виде геометрического образа на координатной прямой. И наоборот: по изображению должно с легкостью формироваться соответствующее числовое множество через объединение числовых промежутков и множеств, являющихся отдельными числами.

Источник

ХНУРЭ дистанционное обучение

Новости сайта

Студентам, хто досі не має доступ до необхідних, за розкладом, навчальних дисциплін.

Шановні студенти ХНУРЕ.

Оголошення для тих, хто досі не має доступ до необхідних, за розкладом, навчальних дисциплін.

Ми не можемо підключати студентів до навчальних дисциплін на вимогу студента.
Ми підключаємо студентів тільки за заявкою викладача.

Тому, будь ласка, зверніться до викладачів тих курсів, доступу до яких у вас немає, щоб вони написали нам лист зі списком студентів, яких потрібно додати на їх дисципліну.

Внимание первокурсников!

Обратите внимание, что хотя логины для почты и системы “ХНУРЭ Дистанционное обучение” одинаковые, но пароли разные!

Новый пароль должен быть не менее 8 символов, в нем должны быть минимум 1 цифра, 1 буква в нижнем регистре и 1 буква в верхнем регистре.

Забыли или потеряли пароль?

Если Вы были зарегистрированы в нашей системе и помните свой логин (он же адрес электронной почты в домене @nure.ua), на который был зарегистрирован ваш аккаунт, воспользуйтесь системой автоматического восстановления пароля:

Восстановить пароль от dl.nure.ua

Восстановить пароль от почты можно в комнате 282 по студенческому билету.

ВНИМАНИЕ! сотрудники ЦТДО не работают со студентами напрямую, а только через ответственных за ДО. Все обращения в очную или при помощи писем на адреса сотрудников – обрабатываться не будут.

Источник

Равенство и неравенство. Знаки: больше, меньше, равно

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Математические знаки

Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.

Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:

Символ меньше (

Символ равенства (=) — это когда два коротких отрезка записаны горизонтально и параллельны друг другу. Используем его при сравнении двух одинаковых чисел:

Чтобы ребенку было легче запомнить схожие между собой знаки, можно применить игровой метод. Для этого нужно сравнить числа и определить в каком порядке они стоят. Далее ставим одну точку у наименьшего числа и две — рядом с наибольшим. Соединяем точки и получаем нужный знак. Вот так просто:

Равенство и неравенство

Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.

Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».

Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.

Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:

Типы неравенств

Источник

Знак включения в математике что означает

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕМАТИЧЕСКИЕ СИМВОЛЫ И ЗНАКИ ДЛЯ ПРИМЕНЕНИЯ В СТАНДАРТАХ

Statistical methods. Mathematical symbols and signs to be used in the standards

Дата введения 2012-12-01

Предисловие

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5)

6 ПЕРЕИЗДАНИЕ. Июнь 2020 г.

Введение

Описание знаков, символов, выражений в настоящем стандарте приведено в форме таблиц (таблицы 4.1-19.1), структура которых, за исключением таблицы 16.1, одинакова.

В первой колонке этих таблиц приведен номер знака, символа, выражения.

Во второй колонке таблицы («Знак, символ, выражение») приведено изображение рассматриваемых знака, символа, выражения. Если более одного знака, символа или выражения приведено для одного объекта, они являются одинаково применимыми и эквивалентными.

В некоторых случаях рекомендуется применять единственное выражение.

В третьей колонке таблицы («Значение, устный эквивалент») приведено описание значения объекта и его устный эквивалент. Значение приведено для идентификации соответствующего понятия и не является полным математическим определением.

В четвертой колонке таблицы («Примечания, примеры») приведена полезная дополнительная информация. Приведенные определения являются достаточно краткими. Определения с математической точки зрения не являются полными.

Структура таблицы 16.1 несколько иная.

1 Область применения

В стандарте приведены общие сведения о математических символах и знаках, их значениях, устных эквивалентах и применении.

Рекомендуемые в стандарте символы и знаки предназначены главным образом для использования в стандартах, но могут быть использованы также и в других областях. Приведенные в настоящем стандарте математические символы соответствуют требованиям [1], ГОСТ 1.5.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

ГОСТ 1.5 Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Общие требования к построению, изложению, оформлению, содержанию и обозначению.

3 Переменные, функции и операторы

Числа, представленные цифрами, всегда изображают прямым шрифтом (вертикально), например 351204; 1,32; 7/8.

Если существует возможность ошибки, необходимо использовать круглые скобки. Например, Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означаетлучше записать в виде Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает, чтобы исключить ошибочное понимание этой формулы.

Запятая, точка с запятой или другой соответствующий символ могут быть использованы для разделения чисел или выражений. Предпочтительно использование запятой, кроме тех случаев, когда ее используют при записи десятичных дробей.

Если выражение или уравнение должно быть записано в две или более строк, следует применять правила, установленные в ГОСТ 1.5.

По возможности разрыв формулы не следует использовать внутри выражения в круглых скобках.

Общепринято использование различных букв (греческого, латинского или других алфавитов) для различных объектов. Это делает формулы более удобными и помогает в восприятии соответствующего текста. При использовании нескольких шрифтов необходимо приводить соответствующие пояснения (при необходимости).

4 Математическая логика

Знаки, символы, выражения, используемые в математической логике, приведены в таблице 4.1.

Источник

«O» большое и «o» малое

Содержание

Определения

Пусть f(x) и g(x) — две функции, определенные в некоторой проколотой окрестности точки x0, причем в этой окрестности g не обращается в ноль. Говорят, что:

Иначе говоря, в первом случае отношение |f|/|g| в окрестности точки x0 ограничено сверху, а во втором оно стремится к нулю.

Обозначение

«f является „O“ большим („о“ малым) от g»

Это обозначение очень удобно, но требует некоторой осторожности при использовании (а потому в наиболее элементарных учебниках его могут избегать). Дело в том, что это не равенство в обычном смысле, а несимметричное отношение

«если функция такова, как написано слева от знака равенства, то она и такова, как записано справа»:

в частности, можно писать

бессмысленны. Другой пример: при x → 0 верно, что

Вместо знака равенства методологически правильнее было бы употреблять знаки принадлежности и включения, понимая O( ) и o( ) как обозначения для множеств функций, то есть используя запись в форме

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Знак включения в математике что означает. Смотреть фото Знак включения в математике что означает. Смотреть картинку Знак включения в математике что означает. Картинка про Знак включения в математике что означает. Фото Знак включения в математике что означает

Однако на практике такая запись встречается крайне редко, в основном в простейших случаях.

При использовании данных обозначений должно быть явно оговорено (или очевидно из контекста), о каких окрестностях (одно- или двусторонних; содержащих целые, вещественные или комплексные числа и т. п.) и о каких допустимых множествах функций идет речь (поскольку такие же обозначения употребляются и применительно к функциям многих переменных, к функциям комплексной переменной, к матрицам и др.).

Основные свойства

Примеры использования

Другие подобные обозначения

Реже используются обозначения:

История

Обозначение «„O“ большое» введено немецким математиком Паулем Бахманом (Paul Gustav Heinrich Bachmann) во втором томе его книги «Analytische Zahlentheorie» (Аналитическая теория чисел), вышедшем в 1894 году. Обозначение «„о“ малое» впервые использовано другим немецким математиком, Эдмундом Ландау (Edmund Georg Hermann Landau) в 1909 году; с работами последнего связана и популяризация обоих обозначений, в связи с чем их также называют символами Ландау. pl:Notacja dużego O sr:Велико О sv:Ordo th:สัญกรณ์โอใหญ่ uk:Нотація Ландау

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *