Звезда что это кратко
Значение слова «звезда»
1. Небесное тело, состоящее из раскаленных газов (плазмы), по своей природе сходное с Солнцем и представляющееся взору человека на ночном небе светящейся точкой. Полярная звезда. Вечерняя звезда. □ Воздух был свежий и холодноватый, на чистом небе сияли крупные звезды. Достоевский, Братья Карамазовы. || перен. Судьба, участь; счастье, удача. Весть о солдатчине мало тревожила его: он верил в свою звезду. Помяловский, Очерки бурсы. — Это у вас счастливая звезда. Ведь на полсантиметра правее, и была бы совсем другая картина. А вы через месяц воевать сможете. Эренбург, Буря.
2. О человеке, прославившемся в какой-л. сфере деятельности; о знаменитости. — Ни одной зимы не проходило без того, чтобы не приезжала какая-нибудь звезда. Чехов, Живая хронология. На него [Урманова] еще в гимназии смотрели как на будущую звезду. Короленко, С двух сторон.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно, что звёзды имеют отрицательную теплоёмкость.
Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. года = 39 Пм = 39 трлн км = 3,9 × 1013 км) от центра Солнечной системы (см. также Список ближайших звёзд).
Невооружённым взглядом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. За исключением сверхновых, все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.
ЗВЕЗДА’, ы́, мн. звёзды, ам и (устар.) зве́зды, звезда́м, ж. 1. Небесное тело, светящееся собственным светом, представляющееся взору человека светящейся точкой на небесном своде. З. шестой величины (астр.). Небо, усеянное звёздами. Прозрачно небо, звёзды блещут. Пшкн. Кто при звезда́х и при луне так поздно едет на коне? Пшкн. 2. перен. Знаменитость, выдающийся по своим талантам и общественным заслугам человек (книжн.
З. нашей литературы. З. экрана. 3. перен. Предопределенное роком счастье, благоприятное предначертание судьбы, удача (книжн. ритор.; в немногих выражениях, восходящих к астрологическим поверьям). Взошла з. славы. Верить в свою звезду. Родиться под счастливой, несчастной звездой. З. моя закатилась. || Личность (преимущ. женщина) как воплощение предопределенного судьбой счастья (поэт. устар.). На звёзды глядишь ты, з. моя ясная. В. Слвьв. З. моего счастья. Но где ж Зарема, з. любви, краса гарема? Пшкн. 4. Вещь, предмет наподобие, в форме звезды. Пятиконечная з. (эмблема Красной армии). Красноармейская з. Вырезать звезду из бумаги. Нарисовать звезду. Мелькает, вьется первый снег, звезда́ми падая на брег. Пшкн. || Знак отличия, орден, имеющий такую форму. Орден Красной звезды. 5. Составная часть названий животных и растений, похожих на звезды (бот., зоол.). Морская з. (кишечно-полостное животное). Лягушечья з. (растение). ◊
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
звезда́
1. астрон. небесное тело, по своей природе сходное с Солнцем, вследствие огромной отдалённости видимое с Земли как светящаяся точка на небесном своде ◆ Кто при звезда́х и при луне // Так поздно едет на коне? Пушкин, «Полтава», Песнь первая ◆ Прозрачно небо, звёзды блещут. Пушкин, «Полтава», Песнь вторая, Полтава г. // «1828» ◆ Звезда шестой величины. ◆ Над ними дышало, перемигивалось, клубилось огромными звёздами, искрило тлеющими метеоритами и хвостами мелких комет пылкое азиатское небо. Дина Рубина, «На солнечной стороне улицы», 1980–2006 г. (цитата из НКРЯ)
2. геометр. плоская фигура, составленная из треугольных лучей, исходящих из общего центра, сливающихся в точке схождения ◆ Нарисовать звезду. ◆ На флаге СССР можно увидеть пятиконечную звезду.
3. вещь, предмет наподобие, в форме звезды [3] ◆ Мелькает, вьётся первый снег, звезда́ми падая на брег. Пушкин, «Евгений Онегин» (Евгений Онегин) // «Глава 4, XLII.», 6 января 1826 г. ◆ Красноармейская звезда. ◆ Вырезать звезду из бумаги. ◆ Орден Красной звезды.
4. ботан. зоол. составная часть названий животных и растений, похожих на звёзды ◆ Морская звезда. ◆ Лягушечья звезда. (растение)
5. перен. известный артист, знаменитость; выдающийся по своим талантам и общественным заслугам человек ◆ Звезда эстрады. ◆ Звезда экрана. ◆ На встречу со звездой нужно приходить подготовленным. ◆ Звезда нашей литературы.
6. перен. книжн. ритор. в немногих выражениях, восходящих к астрологическим поверьям : предопределённое роком счастье, благоприятное предначертание судьбы, удача, слава ◆ Верить в свою звезду. ◆ Родиться под счастливой, несчастной звездой. ◆ Его звезда взошла в 1977 году, когда он впервые стал чемпионом мира по версии ВКА. ◆ Рыцарская конница тоже когда-то была главной ударной силой войска, но её звезда закатилась.
7. перен. поэт. устар. личность (преимущ. женщина) как воплощение предопределённого судьбой счастья ◆ Но где ж Зарема, звезда любви, краса гарема? Пушкин, «Бахчисарайский фонтан», 1821–1823 г ◆ На звёзды глядишь ты, звезда моя ясная! В. С. Соловьёв, «Из Платона», Стихотворения 1872–1882 г ◆ Звезда моего счастья.
Фразеологизмы и устойчивые сочетания
Звезда
1. название ряда белорусских, болгарских, российских и украинских малых населённых пунктов
Что такое звезда
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Звездное небо — одно из самых замечательных зрелищ. На него можно смотреть часами.
Мы видим звезды как маленькие светящиеся точки в ночном небе. Одни из них нам кажутся более яркими, другие менее. На небе звезды расположены рядом друг с другом.
Но какие расстояния между ними на самом деле? И что такое звезда? Об этом как раз и пойдет разговор в этой статье.
Что такое звезда
Звезда — это большой газовый шар, который удерживается в пространстве благодаря силам гравитации и внутреннему давлению.
Каждая звезда отличается тем, что в ее недрах происходят или происходили термоядерные процессы. Каждое из таких небесных тел представляет собой светящийся сгусток материи.
Свет, излучаемый такими объектами, делает эти объекты видимыми для человеческого глаза, даже если они находятся на огромном расстоянии.
Виды звезд
Классифицируют звезды в зависимости от температуры их поверхности. Они бывают:
Такая классификация достаточно примитивна, ведь ученые астрономы говорят еще и о бело-голубых и оранжевых звездах.
Любопытно, что цвет звезды определяется температурой ее поверхности. Однако температура внутри звезды гораздо выше.
Масса звезд бывает разной — от 0,07 массы Солнца (красные), до 50 масс Солнца (голубые гиганты).
Звездная величина
Звездная величина или блеск определяют яркость объекта, его светимость, с точки зрения земного наблюдателя. Это понятие характеризует поток энергии на единицу площади.
Чем меньше значение звездной величины — тем большая яркость у светила. У самых ярких звезд — первая звездная величина.
Ранее считалось, что самые «тусклые» звезды имеют 6-ую звездную величину. Однако это лишь предел зрения невооруженного глаза. С помощью телескопов видны звезды 19-ой величины.
Солнце — это звезда нашей системы
Ближайшая к нам звезда — это Солнце. Земля является одной из восьми планет солнечной системы, которые вращаются вокруг этого небесного светила. Благодаря солнечной энергии и свету, на нашей планете есть понятия «день» и «ночь», «тень» и «солнечная сторона».
Солнце находится от Земли на расстоянии 149,6 млн км. Именно это расстояние называют астрономической единицей. Масса Солнца составляет 1,99*1030 кг, это значение используются для выражения массы других небесных тел.
В ядре нашей звезды происходят термоядерные реакции. Атомы водорода разрываются. Затем происходит слияние полученных частиц (протонов и нейтронов) в ядра атомов гелия.
Плотность газа внутри ядра намного выше плотности железа. Температура ядра Солнца составляет порядка 15 млн Кельвинов. Фотоны, излучаемые ядром, проходят радиационную и конвективную зону Солнца. Солнечный свет достигает Земли приблизительно за 8 минут.
Что такое созвездия
Любителям астрономии нравится находить на ночном небе различные созвездия. Но что такое созвездие? Это участок ночного неба, со всеми видимыми с Земли объектами на нем.
Таким образом, звезды, из которых состоит одно созвездие, не обязательно находятся рядом друг с другом. Они никак друг с другом не связаны и не обозначают область во Вселенной. Введено это понятие лишь для ориентирования в ночном небе.
Созвездие — это группа звезд, которые при проецировании на ночное небо находятся рядом.
Ночное небо разделено на 88 созвездий. Названия они получили в честь:
Список созвездий и их границы на ночном небе были определены на заседании Международного астрономического съезда в 1922 году.
Ближайшая к Солнцу звезда
Самая близкая к Солнцу звезда находится в созвездии Центавр. Это созвездие южного полушария. Самая яркая звезда созвездия обозначается как α — «альфа».
Альфа созвездия Центавр — и есть ближайшая к нам звезда. Ее называют Проксима Центавра или Альфа Центавра. Она расположена на расстоянии 4,22 световых года.
Галактики — что это такое
Звезды, которые объединены в одно созвездие, не обязательно находятся рядом.
Однако есть слово, которое обозначает группу звезд, находящихся в одной области в космическом пространстве. Это — «галактика».
Если не брать во внимание нашу Галактику Млечный Путь, все другие находятся очень далеко. Все же невооруженным глазом можно рассмотреть четыре галактики на ночном небе: 2 в северном полушарии и 2 в южном. По некоторым данным, существуют 2 триллиона галактик.
Галактика Млечный путь имеет спиральную форму и выглядит как вихрь из звезд. Как вокруг звезды вращаются планеты, так и звезды в галактике вращаются вокруг ее центра.
К примеру, нашему солнцу понадобится около 200 млн лет, чтобы пройти полный круг в галактике, хотя оно и движется со скоростью 940 тыс. км/час.
Одна из ближайших и видимых с Земли галактик — Туманность Андромеды. Она имеет такую же, как и Млечный Путь спиральную форму. В галактиках есть старые звезды, средний и новые.
Самые известные звезды
Среди огромного количества звезд в огромном количестве галактик, есть те, о которых многим известно или о которых хотя бы слышали. Вот несколько таких примеров:
Задумываясь о том, насколько большой является Вселенная (это если еще не учитывать, что она постоянно расширяется), мы все больше понимаем, насколько немного о ней знаем. И хотя сведений, полученных от астрономов и с помощью телескопов немало, больше информации еще впереди.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (2)
Интересно, что все химические элементы, что есть на нашей планете, родились в недрах сверхмассивных звёзд, взять хоть золото, трудно в это поверить, но золото и прочие драгоценные металлы, всё это возникло внутри древних звёзд и было выброшено в межзвездное пространство после гибели звезды.
Наше же Солнце не способно синтезировать такие элементы, но оно даёт нам энергию для жизни, что куда важнее золотых слитков.
Строго говоря, Солнце это тоже самая рядовая звезда желтого спектра свечения, причем самая средняя по размеру. Часто читаю опасения по поводу превращения Солнца в сверхновую звезду. В основном люди науки считают, что это невозможно, так как Солнце. давно прошло через фазу сверхновой. В любом случае, проверить этоутверждение никак нельзя.
Звезды. Уроки астрономии
Основная информация о звездах: классы и виды звезд, характеристики, списки звезд, Полярная звезда
Звезда— массивный газовый шар, излучающий свет и удерживаемый в состоянии равновесия силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза.
Toлькo в нaшeй гaлaктикe Mлeчный Путь иx нacчитывaют миллиapды, включaя Coлнцe. He тaк дaвнo мы узнaли, чтo нeкoтopыe из ниx eщe и pacпoлaгaют плaнeтaми.
Звeзды Глaвнoй пocлeдoвaтeльнocти Бoльшaя чacть вceлeнcкиx звeзд нaxoдитcя в cтaдии глaвнoй пocлeдoвaтeльнocти.
Moжнo вcпoмнить Coлнцe, Aльфa Цeнтaвpa A и Cиpуc. Oни cпocoбны кapдинaльнo oтличaтьcя пo мacштaбнocти, мaccивнocти и яpкocти, нo выпoлняют oдин пpoцecc: тpaнcфopмиpуют вoдopoд в гeлий. Пpи этoм пpoизвoдитcя oгpoмный энepгeтичecкий вcплecк. Taкaя звeздa пepeживaeт oщущeниe гидpocтaтичecкoгo бaлaнca. Гpaвитaция зacтaвляeт oбъeкт cжимaтьcя, нo ядepный cинтeз вытaлкивaeт eгo нapужу. Эти cилы paбoтaют нa уpaвнoвeшивaнии, и звeздe удaeтcя coxpaнять фopму cфepы. Paзмep зaвиcит oт мaccивнocти. Чepтa – 80 мacc Юпитepa. Этo минимaльнaя oтмeткa, пpи кoтopoй вoзмoжнo aктивиpoвaть пpoцecc плaвлeния. Ho в тeopии мaкcимaльнaя мacca – 100 coлнeчныx.
Ближайшей к Земле звездой является Солнце — типичный представитель спектрального класса G.
Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами, а на их поверхности — тысячами кельвинов. Энергия большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе.
Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. года = 39 Пм = 39 трлн км = 3,9⋅1013 км) от центра Солнечной системы (см. также Список ближайших звёзд).
Ближайшей к Земле звездой (не считая Солнца) является Проксима Центавра. Она расположена в 4,2 св. годах от нашей Солнечной системы (4,2 св. года = 39 Пм = 39 триллионов км = 3,9×1013 км).
Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.
Основные характеристики звезд
Основными свойствами звёзд являются:
– светимость (полное количество энергии, излучаемое звездой в единицу времени (L),
– температура поверхности,
– масса,
– радиус
Из этой диаграммы видно, что звёзды создают определённую последовательность. Полоса, идущая с левого верхнего угла в правый нижний, называется “главная последовательность” В верхнем правом углу находятся холодные, но в то же время огромные звёзды, называемые красными гигантами. В левом нижнем углу –”белые карлики”. Очень горячие звёзды, но и очень маленькие. Солнце имеет спектральный класс G2.
Диаграмма Герцшпрунга — Рассела (или Рессела), также встречаются названия и сокращения диаграмма Г—Р, цвет — звёздная величина или спектр — светимость, — диаграмма рассеяния, по осям которой отмечается абсолютная звёздная величина (или светимость) и спектральный класс (или температура поверхности) звезды. Звёзды на этой диаграмме не распределены равномерно, а располагаются в определённых областях. Эта диаграмма сыграла важную роль в развитии теории звёздной эволюции.
Главная последовательность — класс звёзд, а также область на диаграмме Герцшпрунга — Рассела, образованная ими. Она расположена примерно на диагонали этой диаграммы и проходит из её верхнего левого угла (высокие светимости, синий цвет) в правый нижний угол (низкие светимости, красный цвет). То есть звёзды главной последовательности лежат в довольно широком диапазоне значений масс, температур и светимостей.
Пребывание на главной последовательности является наиболее длительным этапом в эволюции звёзд, при этом источником их энергии являются термоядерные реакции синтеза гелия из водорода. Практически все звёзды в определённый момент жизни оказываются на главной последовательности — исключением являются субкарлики, которые похожи на звёзды главной последовательности, но бедны тяжёлыми элементами и имеют меньшую светимость. Планетные системы звёзд главной последовательности с массой от долей до единиц солнечной являются объектом поиска обитаемых планет — ввиду длительного существования и стабильных размеров зоны обитаемости.
Дальнейшая эволюция звезды уже зависит от массы, но в любом случае следующие стадии эволюции длятся гораздо меньше, чем стадия главной последовательности. Как следствие, абсолютное большинство звёзд во Вселенной, в том числе и Солнце, принадлежит главной последовательности.
Единицы измерения
Большинство звёздных характеристик, как правило, выражается в СИ, но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с Солнцем.
Солнечная масса или масса Солнца — внесистемная единица измерения массы, применяющаяся в астрономии для выражения массы звёзд и других астрономических объектов (например, галактик). Она обозначается через M☉ и равна массе Солнца:
M☉ = (1,98847 ± 0,00007)⋅1030 кг.
Солнечная масса приблизительно в 332 946 раз превышает массу Земли. Большинство отдельных звёзд во Вселенной имеют массу от 0,08 до 50 M☉, а масса чёрных дыр и целых галактик может достигать миллионов и миллиардов солнечных масс.
Солнечная светимость — единица светимости (то есть количества энергии, выделяемой в единицу времени), обычно используемая астрономами для представления светимости звёзд. Равна светимости Солнца, составляющей 3,827⋅1026 Вт или 3,827⋅1033 эрг/с.
<\displaystyle M_<\bigodot >=1.9891\times 10^<30>>
Солнечный радиус — единица измерения длины, используемая для выражения размеров звёзд; равна радиусу Солнца и составляет: <\displaystyle R_<\odot >>R_ <\odot >= 6,960⋅108 м = 0,004652 астрономической единицы.
Радиус Солнца примерно равен 109 радиусам Земли или 400 радиусам Луны.
Широко используется в астрономии как практичная внесистемная сравнительная единица, наряду с солнечной массой и солнечной светимостью.
Световой год – это путь, пробегаемый в пустом пространстве лучом света за год времени. Как велика эта мера, мы поймем, вспомнив, что солнечный свет достигает Земли всего за 8 минут. Световой год, следовательно, во столько раз больше радиуса земной орбиты, во сколько раз год времени больше 8 минут. В километрах эта мера длины выражается числом 9 460 000 000 000, т. е. световой год равен около 9½ биллионов км.
Парсек – это расстояние, на которое надо удалиться, чтобы полудиаметр земной орбиты виден был под углом в одну угловую секунду. Угол, под каким виден со звезды полудиаметр земной орбиты, называется в астрономии годичным параллаксом этой звезды. От соединения слов «параллакс» и «секунда» образовано слово «парсек». Параллакс названной выше звезды альфа Центавра – 0,76 секунды; легко сообразить, что расстояние этой звезды – 1,31 парсека. Нетрудно вычислить, что один парсек должен заключать в себе 206 265 расстояний от Земли до Солнца. Соотношение между парсеком и другими единицами длины таково: 1 парсек = 3,26 светового года = 30 800 000 000 000 км.
Светимость
Светимость звезды вычисляют по энергии, достигающей Земли при условии, если известно расстояние до звезды.
По светимости звёзды различаются в очень широких пределах. Большинство звёзд составляют “карлики”, их светимость ничтожна иногда даже по сравнению с Солнцем.
Характеристикой светимости является “абсолютная величина” звезды. Есть ещё понятие “видимая звёздная величина”, которая зависит от светимости звезды, цвета и расстояния до неё. В большинстве случаев используют “абсолютную величину”, чтобы реально оценить размеры звёзд, независимо как далеко они находятся.
Видимая звёздная величина (m) — мера яркости небесного тела (точнее, освещённости, создаваемой этим телом) с точки зрения земного наблюдателя. Обычно используют величину, скорректированную до значения, которое она имела бы при отсутствии атмосферы. Чем ярче объект, тем меньше его звёздная величина. Уточнение «видимая» указывает только на то, что эта звёздная величина наблюдается с Земли; это уточнение нужно, чтобы отличить её от абсолютной.
Оно не указывает на видимый диапазон: видимыми называют и величины, измеренные в инфракрасном или каком-либо другом диапазоне. Величина, измеренная в видимом диапазоне, называется визуальной.
Цвет и температура
Цвет
Диапазон длин волн, А
Горячие звезды излучают больше энергии в синей части спектра, холодные звезды — в красной. Планеты излучают энергию преимущественно в инфракрасной части спектра
Обычно в спектре каждой звезды есть темные линии поглощения, которые образуются в разреженной атмосфере звезды и в атмосфере Земли и показывают химический состав этих атмосфер. Оказалось, что все звезды имеют почти одинаковый химический состав, так как основные химические элементы во Вселенной — водород и гелий, а основное отличие различных спектральных классов обусловлено температурой звездных фотосфер.
Последовательность спектров звёзд, получающихся при непрерывном изменении их поверхностных слоёв определяет Спектральные классы звезд и обозначается следующими буквами: O, B, A, F, G, K, M (от горячих к холодным). Спектральная классификация звезд рассматривается ниже.
Радиус
Радиус звёзд может очень сильно отличаться, а также меняться. Для определения радиуса звезды нельзя использовать геометрический метод, потому что звезды находятся настолько далеко от Земли, что даже в большие телескопы еще до недавнего времени невозможно было измерить их угловые размеры — все звезды имеют вид одинаковых светлых точек.
Радиус звезды можно определить, измеряя ее светимость и температуру поверхности Для определения радиуса астрономы используют закон Стефана-Больцмана:
где Q — энергия, излучаемая единицей поверхности звезды за единицу времени; σ — постоянная Стефана-Больцмана; Т — абсолютная температура поверхности звезды.
Существуют звезды, которые имеют радиус в сотни раз больший радиуса Солнца, и звезды, имеющие радиус меньший, чем радиус Земли.
Масса
У звезды два параметра, определяющие все внутренние процессы — масса и химический состав. Если их задать для одиночной звезды, то на любой момент времени можно предсказать все остальные физические характеристики звезды, такие как блеск, спектр, размер, внутренняя структура.
Звёзды разделяются по массе в более узких пределах в отличие от светимости (которая может различаться и в 1000 раз). Очень мало звёзд, имеющих массу в 10 раз больше или меньше Солнечной. Достоверно определить массу звезды можно, только если она является компонентом двойной звезды. В этом случае массу можно вычислить, используя обобщённый третий закон Кеплера.
Во всех прочих случаях приходится определять массу косвенно, например, из зависимости масса — светимость.
Ученые, изучая распределение звезд по массам и учитывая время жизни звезд различной массы, распределяют звезды по массам в момент их рождения. Ими установлено, что вероятность рождения звезды определенной массы, очень приближенно, обратно пропорциональна квадрату массы (функция Солпитера): F(M)
M-7/3.
Это общая закономерность. Во многих областях Вселенной наблюдается дефицит массивных звезд. В тех областях, где молодых звезд много, звезд маленькой массы меньше. Исследователи полагают, что первые звезды были яркими, массивными и короткоживущими.
Химический состав, структура
Несмотря на то, что доля элементов тяжелее гелия в химическом составе звёзд исчисляется не более чем несколькими процентами, они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускоряться, а это отражается как на яркости звезды, так и на цвете и на продолжительности её жизни.
Химический состав звёзд очень сильно зависит от типа звёздного населения и отчасти от массы — у массивных звёзд в недрах полностью отсутствуют элементы тяжелее гелия (в молодом возрасте этих звёзд), жёлтые и красные карлики сравнительно богаты тяжёлыми элементами.
В общем случае у звезды, находящейся на главной последовательности, можно выделить три внутренние зоны: ядро, конвективную зону и зону лучистого переноса.
Ядро — это центральная область звезды, в которой идут ядерные реакции.
Конвективная зона — зона, в которой перенос энергии происходит за счёт конвекции. Для звёзд с массой менее 0,5 M☉ она занимает всё пространство от поверхности ядра до поверхности фотосферы. Для звёзд с массой, сравнимой с солнечной, конвективная часть находится на самом верху, над лучистой зоной. А для массивных звёзд она находится внутри, под лучистой зоной.
Лучистая зона — зона, в которой перенос энергии происходит за счёт излучения фотонов. Для массивных звёзд эта зона расположена между ядром и конвективной зоной, у маломассивных она отсутствует, а у звёзд больше массы Солнца находится у поверхности.
На более поздних стадиях добавляются дополнительные слои, в которых идут ядерные реакции с элементами, отличными от водорода. И чем больше масса, тем больше таких слоёв.
Над поверхностью звезды находится атмосфера, как правило, состоящая из трёх частей: фотосферы, хромосферы и короны.
Фотосфера — самая глубокая часть атмосферы, в её нижних слоях формируется непрерывный спектр.
Ядерные реакции
Для звёзд главной последовательности основным источником энергии являются ядерные реакции с участием водорода: протон-протонный цикл, характерный для звёзд с массой около солнечной, и CNO-цикл, идущий только в массивных звёздах и только при наличии в их составе углерода. На более поздних стадиях жизни звезды могут идти ядерные реакции и с более тяжёлыми элементами вплоть до железа.
Расстояние до звезд
Для обозначения расстояния до звёзд приняты такие единицы, как световой год и парсек. Меньшие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёзд, часто выражаются с использованием астрономической единицы (а.e.), равной среднему расстоянию между Землёй и Солнцем (около 150 млн км).
Существует множество способов определить расстояние до звезды. Наиболее точным и основным для всех остальных методов является метод измерения параллаксов звёзд. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек, а со специальных астрометрических спутников, таких как Hipparcos, — до 1000 пк. В основном, для определения расстояния до далёких звёзд используется фотометрия.
Спектральные классы звёзд
Классификации звёзд начали строить сразу после того, как начали получать их спектры.
В начале XX века Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» — «спектральный класс» различные звёзды, и оказалось, что бо́льшая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга — Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды.
Оказалось, что всё многообразие видов звёзд — это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.
Спектра́льные кла́ссы — классификация звёзд по спектру излучения, в первую очередь, по температуре фотосферы.
Спектр — распределение энергии излучения по частоте или по длинам волн. Спектр излучения звёзд — непрерывный, на который накладываются яркие и тёмные линии.
Видимое в спектроскопе представление оптического спектра
Спектры звёзд удалось расположить в виде последовательности, вдоль которой линии одних химических элементов усиливаются, а других — постепенно ослабевают. Сходные между собой спектры объединяются в спектральные классы.
Различия в спектрах звёзд обусловливаются различием физических свойств их атмосфер, в основном, температуры и давления (определяющих степень ионизации атомов). Вид спектра зависит также от наличия магнитных и межатомных электрических полей, различий в химическом составе, вращения звёзд и от других факторов.
Основная (гарвардская) спектральная классификация звёзд
Современная (гарвардская) спектральная классификация звёзд, разработанная в Гарвардской обсерватории в 1890—1924 годах, является температурной классификацией, основанной на виде и относительной интенсивности линий поглощения и испускания спектров звёзд.
Спектральные типы обозначаются буквами латинского алфавита. Последовательность выглядит следующим образом:
Q — P — W — O —B — A — F — G — K — M
Класс
Температура,
K
Истинный цвет
Видимый цвет
Масса,
M☉
Радиус,
R☉
Светимость,
L☉
бело-голубой и белый
Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). Солнце имеет спектральный класс G2 и эквивалентную температуру фотосферы 5780 K.
Класс O
Звёзды имеют очень высокую температуру (30-60 тысяч К), о чём свидетельствует большая интенсивность ультрафиолетовой области. Звёзды имеют ярко выраженный голубой оттенок. Больше всего тёмных спектральных линий в крайней левой фиолетового цвета части спектра (если смотреть на изображение спектра выше). Типичные звёзды этого класса — Дзета в созвездии Корма, Лямбда Ориона, Кси Персея.
Класс B
Температура поверхности звезды колеблется в диапазоне от 10 до 30 тысяч К. Имеют голубовато-белый цвет. Самый типичный представитель — звезда Спика (в созвездии Дева). Также Ригель и Эпсилон Ориона.
Класс A
Температура от 7500 до 10000 К. Белого цвета. Линии водорода достигают наибольшей интенсивности. Яркими представителями являются звёзды Вега и Сириус.
Класс F
Температура лежит в диапазоне 6000 — 7500 К. Происходит ослабление линий водорода и усиление линий ионизированных металлов: кальций, титан, железо. Цвет ярко-жёлтый. Знаменитые звёзды — Процион в созвездии Малый Пёс и Канопус в созвездии Киль.
Класс G
Температура на поверхности равна 5000 — 6000 К. Содержится большое количество ионизированного кальция. Цвет жёлтый. Звезда Солнце относится к этому классу.
Класс K
Температура уже не превышает 5 тысяч К и лежит в диапазоне от 3500 до 5000 К. Цвет светло-красный. К этому классу относятся звёзды Арктур в созвездии Волопас и Альдебаран в Тельце.
Класс M
Звёзды с минимальной температурой равной 2000 — 3500 К. На спектре линии металлов ослабевают. Цвет ярко-красный, иногда тёмно-оранжевый. К этому классу относится знаменитая звезда Бетельгейзе в созвездии Орион.
Выделяют также дополнительные спектральные классы для некоторых классов небесных тел:
Подклассы
Для более детального разделения на классы были введены подклассы.
Каждый класс, за исключением O, делится на 10 подклассов, которые обозначаются цифрами от 0 до 9 и ставятся после буквы основного класса. Спектральный класс O делится на меньшее количество подклассов: от 4 до 9,5. Наше Солнце с учётом подкласса имеет вид — G2 и температуру поверхности (фотосферы) равную 5780 К.
Если спектр звезды обладает дополнительными особенностями, к обозначению класса добавляются дополнительные символы (индексы).
Если присутствуют эмиссионные линии, ставится буква е (B5e).
Звезды-сверхгиганты часто отличаются глубокими узкими линиями. Это отмечается буквой с (cF0).
Интенсивность избранных линий поглощения даёт нам возможность судить о светимости звезды и определить, является ли она гигантом (перед спектральным классом ставится индекс γ) или карликом (индекс δ).
Другие особенности в спектре звезды, нетипичные для данного спектрального класса, отмечаются буквой р — пекулярные (А6р).
Два последних индекса связаны с осевым вращением звезды, которое приводит к размытию и расширению спектральных линий: индекс n — диффузные линии, s — резкие линии.
Йеркская спектральная классификация с учётом светимости (МКК)
Дополнительным фактором, влияющим на вид спектра, является плотность внешних слоёв звезды, зависящая, в свою очередь от её массы и плотности, то есть, в конечном итоге, от светимости. Так одному гарвардскому спектральному классу могут соответствовать звёзды с одинаковой температурой поверхности, но различных классов светимости. Особенно сильно зависят от светимости SrII, BaII, FeII, TiII, что приводит к различию в спектрах звёзд-гигантов и карликов одинаковых гарвардских спектральных классов.
Зависимость вида спектра от светимости отражена в более новой йеркской классификации, разработанной в Йеркской обсерватории (Yerkes Observatory). В соответствии с этой классификацией звезде приписывают гарвардский спектральный класс и класс светимости.
Абс. звёзд. величины MV
Карлики главной последовательности
Таким образом, если гарвардская классификация определяет абсциссу диаграммы Герцшпрунга — Рассела, то йеркская — положение звезды на этой диаграмме. Дополнительным преимуществом йеркской классификации является возможность по виду спектра звезды оценить её светимость и, соответственно, по видимой величине — расстояние (метод спектрального параллакса).
Солнце, будучи жёлтым карликом, имеет йеркский спектральный класс G2V.
Виды звёзд
Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.
В начале XX века Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» — «спектральный класс» различные звёзды, и оказалось, что бо́льшая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга — Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды. Теперь, когда есть теория внутреннего строения звёзд и теория их эволюции, стало возможным и объяснение существования классов звёзд.
Оказалось, что всё многообразие видов звёзд — это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.
В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идёт буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идёт класс светимости (номер области на диаграмме Герцшпрунга — Рассела), а затем идёт дополнительная информация. К примеру, Солнце имеет класс G2V.
Звёзды главной последовательности
Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность — это та область диаграммы Герцшпрунга-Рассела, в которой звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакций. Время жизни на главной последовательности определяется массой и долей элементов тяжелее гелия (металличностью).
Современная (гарвардская) спектральная классификация звёзд разработана в Гарвардской обсерватории в 1890—1924 годах.
Для облегчения запоминания порядка классов астрономы используют мнемонику: Oh, Be A Fine Girl, Kiss Me. Имеется и русский вариант, придуманный Воронцовым-Вельяминовым. Поздние классы в мнемониках не упомянуты, поскольку ещё не были выделены отдельно.
ГДЕ УЧИТЬСЯ
Популярные курсы, перспективные профессии
Нетология
netology.ru
интернет-маркетинг, проекты, дизайн, Data Science и разработка
Skillbox
skillbox.ru
маркетинг, менеджмент, программирование, дизайн, игры
SkillFactory
skillfactory.ru
востребованные профессии в IT
ЕШКО
escc.ru
большой выбор программ и курсов
Udemy
udemy.com
курсы и специальности по большинству направлений
GeekBrains
gb.ru
программирование, маркетинг, дизайн, управление
Коричневые карлики
Коричневые карлики — это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звёзд. Однако в 1995 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М — T. В теории выделяется ещё один класс — обозначаемый Y.
Белые карлики
Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.
Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.
Красные гиганты
Красные гиганты и сверхгиганты — это звёзды с довольно низкой эффективной температурой (3000—5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов −3m—0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.
Типа Вольфа — Райе
Звёзды Вольфа — Райе — класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа — Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота в разных степенях ионизации (NIII — NV, CIII — CIV, OIII — OV). Ширина этих полос может достигать 100 Å, а излучение в них может в 10-20 раз превышать излучение в континууме. Звёзды такого типа имеют свой класс — W. Однако подклассы строятся совсем не как у звёзд главной последовательности:
1. WN — подкласс Вольфа-Райе звёзд в спектрах которых есть линии NIII — V и HeI-II.
2. WO — в их спектрах сильны линии кислорода. Особенно ярки линии OVI λ3811 — 3834
3. WC — звёзды, богатые углеродом.
Окончательной ясности происхождения звёзд типа Вольфа — Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звёзд, сбросившие значительную часть массы на каком-то этапе своей эволюции.
Типа T Тельца
Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS) — класс переменных звёзд, названный по имени своего прототипа Т Тельца. Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и хромосферной активности.
Они принадлежат к звёздам спектральных классов F, G, K, M и имеют массу меньше двух солнечных. Период вращения от 1 до 12 дней. Температура их поверхности такая же, как и у звёзд главной последовательности той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие.
В спектре звёзд типа T Тельца присутствует литий, который отсутствует в спектрах Солнца и других звёзд главной последовательности, так как он разрушается при температуре выше 2 500 000 K.
Новые
Новая звезда — тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда:
1. Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
2. Быстрые — 11 ☆






