Звездные системы объединяются во что
Что такое двойные системы звезд
Двойные системы звезд – не самое редкое явление. Но оно вызывает интерес у специалистов всего мира. Несмотря на давность открытия, астрономов ждет еще много тайн.
Определение двойных звезд
Двойные системы звезд состоят из двух связанных гравитацией объектов, которые обращаются по закрытым орбитам вокруг общего центра. Известно, что половина звезд нашей Галактики относят к таким системам, поэтому это явление довольно популярное. При наблюдении с Земли расстояние между двойными звездами не кажется впечатляющим, но на самом деле оно превышает 500 световых лет. Встречаются также небесные тела, расположенные близко друг к другу, но при этом не связанные общим центром.
Два связанных объекта могут быть разными по размеру, массе, яркости. Превосходящую звезду обозначают буквой А, вторую – В. Некоторые системы без применения телескопа воспринимаются как одно небесное тело.
Открытие систем
Начало использования астрономического бинокля ознаменовалось открытием двойных систем. Чтобы подробно описать 700 звезд Вильяму Гершелю понадобилось 24 года. Именно его исследования привели к выводу, что между двумя небесными телами есть гравитационная связь.
Классификация двойных звезд
Двойные звезды делят на классы по обмену массами и способу наблюдения.
Разделение по физическим свойствам:
Тесные системы бывают:
Разделение звезд по способу наблюдения:
Двойные звезды Мицар и другие примеры
Среди известных небесных тел много примеров. Какие звезды двойные:
Интересно! Есть предположение, что одиночных звезд меньше, чем звездных систем.
Двойные звезды – система из двух небесных тел, связанных гравитацией. Сириус, Альфа Центавра, Альфа Гончих Псов и Мицар – самые известные примеры.
Двойная система из О-звезд в представлении художника
Изображение с сайта ru.wikipedia.org
4glaza.ru
Октябрь 2020
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах:
Галактики — звёздные города
Острова во Вселенском Океане
Галактики представляют собой, судя по всему, самые крупномасштабные целостные структуры Вселенной, из известных ученым. Конечно, есть еще скопления галактик, сверхскопления… но эти структуры открытые, не целостные и малоизученные. Но давайте обо всем по порядку. Начнем с самого малого.
В античной Греции (около 2500 лет назад) зародилось представление о том, что все вещества и предметы состоят из мельчайших и неделимых частиц, которые изначально определяют свойства того или иного вещества. Их назвали “атомы”.
Сейчас науке известно, что атомы вполне делимы, и сами в свою очередь состоят из элементарных частиц — протонов, нейтронов, электронов. Там же где-то формально или физически присутствуют позитроны — антиподы электронов, превращающие нейтральный нейтрон в положительно заряженный протон. Если говорить упрощенно, то комбинации этих частиц и дает нам все многообразие веществ во Вселенной. Но каждая из них так же состоит из еще более мелких конструкций, определяющих их суть — из кварков. Насколько глубок колодец микромира, науке неизвестно, но уже сейчас достаточно оснований считать, что и кварки, в свою очередь, тоже из чего-то состоят.
Теперь двинемся в противоположном направлении по оси усложнения вселенских структурных элементов.
Атомы соединяются в молекулы. Фактически, молекула и есть — та минимальная единица любого химического соединения — вещества — во Вселенной. Молекулы определяют физические и химические свойства веществ, а не атомы, как это предполагали некоторые греческие философы. Но ошиблись они не сильно.
Молекулы иногда тождественны с атомами. Например молекулы металлов состоят всего из одного атома. Но атомы в металлах соединяются в некотором порядке, образуя протяженные кристаллические решетки. Это роднит их с кристаллами солей, где свойства и структура вещества зависят от геометрии соединения атомов или молекул между собой. Кристалл представляет собой еще более крупную структуру нашего мира.
Дальше, как ни странно, идут живые организмы. В этой цепочке я бы выделил три основных звена:
Каждая из этих структур обладает своей ясной внутренней организованностью и целостностью, нарушение которой приводит к необратимому разрушению структуры.
Далее идут планеты — во всем своем многообразии — это могут быть газовые гиганты типа Юпитера и Сатурна, каменные планеты земного типа, но к ним же я причисляю и астероиды, ядра комет, метеороиды. Их объединяет механическая целостность, обусловленная гравитационной связанностью всех входящих в их состав веществ в виде более мелких структур — молекул и кристаллов. Более крупные структуры планетарного семейства под действием гравитационных сил обретают форму близкую к сферической. Мелкие остаются неправильными по форме. И еще им свойственна пространственная отделенность от других подобных космических тел — их разделяют порой миллионы километров вселенского вакуума. При этом существовать представители этого структурного семейства могут как в сообществах себе подобных тел — в планетных системах — под доминирующим влиянием звезд, так и сами по себе — отдельно — в тотальном космическом одиночестве.
Звезды — это еще более крупные вселенские структуры. Они образуются из коллапсирующих (сжимающихся под действием гравитации) облаков водорода. Сами облака водорода — первородного вещества нашей Вселенной — можно было бы причислить к субструктурам — они не целостны, не едины, не устойчивы, но стремясь ко всем этим перечисленным недостающим качествам превращаются в звезды. При достижении некоторой массы и давления в уплотненном центре коллапсирующей туманности, новое образование вспыхивает звездой — в её недрах запускаются термоядерные реакции. В ходе этих реакций происходит превращение водорода в гелий — по сути удивительная трансформация одного структурного элемента — атома водорода, в другой структурный элемент — в атом гелия. И тут мы сталкиваемся с еще одной важной составляющей нашего мира — с излучением, которое пронизывает все пространство Вселенной, и призвано переносить по нему энергию, освобождающуюся в том числе и в процессе термоядерных реакций. Превращение водорода гелий происходит с выделением значительного количества энергии, которая покидает центр звезды с излучением. В противном случае температура в центре звезды продолжала бы расти и рано или поздно звезда бы вышла из равновесного состояния. Кстати, такое случается.
Звезды могут объединяться в более крупные структурные единицы. Можно выделить несколько разновидностей таких структур:
Только шаровые звездные скопления можно считать устойчивыми структурами, способными существовать миллиарды лет — то есть — период времени одного порядка с продолжительностью жизни входящих в их состав более мелких структурных единиц — звезд. Рассеянные скопления довольны быстро распадаются, а системы двойных и кратных звезд очень многообразны и сказать что-то конкретное об этом классе в двух словах невозможно. Вряд ли это вообще имеет смысл считать неким единым классом.
И вот мы добрались до галактик.
Подобно тому, как люди живут в городах, звезды группируются в сообщества многомиллиардной численностью. Еще можно уподобить эти сообщества островам в океане, между которыми простирается непреодолимость океанических вод, и один остров с другого острова практически не виден.
Звезды не распространены по Вселенной равномерно. Подобно тому, как планеты и звезды разделены бездной космического вакуума, так и сообщества звезд — галактики — разделены еще более протяженными пустотами. Но к пониманию этого люди пришли относительно недавно.
Само слово “Галактика” происходит от греческого “Молочный” — “Γαλακτικός” — “Галактикос”. Так греки описывали широкое сияние протянувшееся через весь небосвод — “Млечный путь”, а по одному из греческих мифов это сияние представляло собой пролитое Герой (супругой Зевса) молоко, когда богиня кормила своего приемного сына — Геракла.
Около 400 лет назад Галилео Галилей навел на Млечный путь свой первый телескоп и обнаружил, что это сияние — ни что иное, как неисчислимое множество слабых звезд, сливающихся для глаза воедино. Почему звезды сложились в этот кольцеобразный “круг почета” опоясывающий земной небосвод — это не было понятно еще долгие 300 лет, пока Эдвин Хаббл не разделил на отдельные звезды спиральные рукава туманности Андромеды.
До открытия Эдвина Хаббла считалось, что все эти “завитушки” спиральной структуры являются объектами нашего звездного мира, который где-то наверняка кончается, но где? и что там дальше? — это науке не было известно.
Когда среди звезд в туманности Андромеды обнаружились переменные звезды — Цефеиды, стало возможным определение расстояния до них. Оно оказалось огромным — порядка двух миллионов световых лет. С такими дистанциями астрономы не имели дела. В ходу были световые годы, десятки, сотни — максимум — тысячи. И вдруг такой качественный скачок.
Выяснилось, что на протяжении этих миллионов световых лет, разделяющих наш звездный остров, и подобные туманности Андромеды спиралевидные образования, нет ничего — пустота, вселенский вакуум. А все звезды, видимые с Земли, живут исключительно в этих звездных островах.
Более современные телескопы показали, что количество спиралевидных звездных островов огромно — Млечный путь не содержит столько звезд, а сама форма Млечного пути, если было бы возможным взглянуть на него со стороны, оказалась подобна Туманности Андромеды или Туманности Треугольника. И это было важнейшим открытием: Мы живем в одном из звездных водоворотов, коих на небе сотни миллиардов. А в каждом из них сотни миллиардов звезд.
Все эти многочисленные звездные города были причислены к новому классу вновь определенного типа структур — к галактикам. Причем, если имеется в виду наша Галактика — Млечный путь, то она всегда упоминается на письме с использованием заглавной буквы. Остальные галактики упоминаются с использованием строчных букв.

Иллюстрация расположения Солнечной системы внутри Галактики «Млечный путь»
Оказалось, что формы и разнообразие галактик очень различны. Спиральных — большинство. Но и среди них есть множество разновидностей — с баром-перемычкой и без, с двумя спиральными ветвями и большим количеством. Нашлась даже галактика-кольцо, центр которой никак не соединен с периферией звездными путями.
Очень многочисленным классом оказались эллиптические галактики, которые напоминают шаровые скопления звезд, только в миллионы раз более масштабные. И фактически центральные части спиральных галактик подобны эллиптическим. Возможно, эллиптические галактики утратили свои спиральные ветви или ассимилировали их в ядро.
Но еще более интересными оказались галактики неправильной формы. Их происхождение оставляет широчайшее поле для гипотез. Вариантов множество. Одним из наиболее популярных объяснений является слияние галактик. Оказывается, что невзирая на миллионы световых лет межгалактического вакуума, галактики все-таки встречаются друг с другом и сливаются в нечто более крупное. При этом их формы сильно искажаются — спиральные ветви разрушаются, приливные силы активируют звездообразование, в ходе которого “вспыхивают” миллиарды новорожденных звезд, какая-то часть звезд выбрасывается за пределы этих “звездных городов”.
Впервые изучать сливающиеся галактики начал советский астроном Борис Александрович Воронцов-Вельяминов, положив начало галактической морфологии и классификации взаимодействующих галактик. А до него считалось, что близость изображений двух и более галактик на фотопластинках — чисто иллюзорное совпадение направлений, в которых на самом деле галактики расположены на очень разных расстояниях от нас, и — на почтительных расстояниях между собой.

Борис Александрович Воронцов-Вельяминов (14 февраля 1904 — 27 января 1994) — советский астроном, член-корреспондент Академии педагогических наук СССР
Нашлось немало примеров того, что большинство галактик, как и большинство звезд, живут в небольших группах и даже имеют спутники — карликовые галактики. Есть спутники у Галактики Млечный Путь, и у Туманности Андромеды.

Карликовая галактика «Большое Магелланово Облако» — спутник Галактики «Млечный путь»
Более крупномасштабный взгляд на мир галактик выявил скопления галактик численностью в тысячи и миллионы звездных островов. Такие скопления расположены в направлении созвездий Волосы Вероники, Девы и Льва. Но это — самые близкие из скоплений. А если попытаться проникнуть взглядом сквозь мерцание звезд нашей Галактики, мы увидим, что скопления галактики окружают нас повсюду.

Сверхскопление галактик в созвездии Геркулеса
С помощью телескопа имени Хаббла было найдено несколько брешей среди звезд нашей Галактики. На полученных снимках видно, что галактики окружают нас буквально плотной стеной… нет, конечно — между ними довольно пустоты, как всюду во Вселенной, но создается иллюзия, что они буквально накладываются друг на друга.
В этой иллюзорной галактической сфере есть своя структуризация — галактики, объединенные в сверхскопления, образуют нити, волокна, которые протягиваются, соединяясь с подобными себе метагалактическими нитями, и рисуют на самом крупномасштабном полотне Вселенной подобие пчелиных сот.
Это уже с большим трудом укладывается в сознании даже самых продвинутых ученых. И описать на уровне законов нашего мира причины образования такой удивительно структуризации астрофизикам пока не удалось. Мы даже не представляем, что является следующей структурной единицей в нашем Мире после галактик. И это еще предстоит нам познать.

Столкновение двух галактик спирального типа, с превращением в одну «неправильную»
PS: Толчком к написанию статьи стала музыка, представленная в самом начале этой публикации. Однажды ночью я сел за инструмент и погрузился в импровизацию — без малого на полчаса. Я записал это. Позже решил сделать видеосопровождение к музыке. Осознал, что здесь должны быть представители мира галактик — во всем своем многообразии. В процессе видеомонтажа я понял, что готов написать несложную статью об этом.
Кстати, музыку можно скачать с моего сайта: Студийная сессия «Ночные импровизации»
Надеюсь, что эта статья откроет собой целый цикл публикаций, посвященных многообразию галактик, о которых говорить можно бесконечно долго. Следите за моими новостями, Друзья.
Двойные и кратные звёздные системы
Большое число звёзд видимых в нашей галактике и за её пределами принадлежат к двойным и более кратным звёздным системам. То есть с уверенностью можно сказать, что наша одиночная звезда Солнце принадлежит к меньшинству в классификации звёздных систем. О том, что это за такие системы, давайте поговорим.
В некоторых источниках говорится, что лишь 30% от общего числа звёзд — одиночные, в других можно найти число 25. Но с совершенствованием методик измерения и изучения двойных и кратных звёзд, процентное соотношение одиночных изменяется. Связано это в первую очередь со сложностью обнаружения маленьких (по размерам, но не массе) звёзд. На сегодняшний день астрономами открыто множество экзопланет, которые при первом обнаружении могут подходить под описание вторичных звёзд в системе двух и более звёзд, только после детального изучения и множества расчётов исключается вариант, что это звёзда, а найденный объект относят к планетам (определяется это по массе, по гравитационному притяжению, по взаимному расположению, поведению и ещё многим другим факторам).
Двойные звёзды
Система из двух связанных силами гравитации звёзд называется двойной звёздной системой или просто двойной звездой.
В первую очередь следует подчеркнуть, что не все оптически рядом расположенные две звезды — двойные. Отсюда следует, что звёзды, которые видны на небе близко друг от друга для наблюдателя с Земли, но при этом не связанные гравитационными силами и не имеющими общий центр масс называются оптически двойными. Хороший пример — α Козерога — пара звёзд находятся на огромном расстоянии друг от друга (примерно 580 световых лет), но нам кажется что они рядом.
Физически двойные звёзды обращаются вокруг общего центра масс и связаны между собой силами гравитации. Пример — η (эта) Кассиопеи. По периоду вращения и взаимному расстоянию можно определить массу каждой из звезды. Период вращения имеет внушительный диапазон: от нескольких минут, если речь идёт о вращении карликовых звёзд вокруг нейтронных, до нескольких миллионов лет. Расстояния между звёздами примерно могут быть от 10 10 до 10 16 м (около 1 светового года).
Двойные звёзды имеют весьма обширную классификацию. Приведу лишь основные пункты:
Кратные звёзды
Как понятно из названия, если число взаимосвязанных звёзд превышает две, то это кратные звёздные системы или кратные звёзды. Их также разделяют на оптически и физически кратные звёзды. Если число звёзд в системе можно увидеть невооружённым глазом, в бинокль или телескоп, то такие звёзды называются визуально кратными. Если для определения кратности системы требуются дополнительные спектральные измерения, то это спектрально кратная система. И, если же кратность системы определяется по изменению блеска, то это затменно-кратная система. Простой пример тройной звезды показан ниже — это звезда HD 188753 в созвездии Лебедь:
Тройная звезда HD 188753
Как видно на изображении выше, в тройной системе есть пара тесно связанных звёзд и одна удалённая с большей массой, вокруг которой и происходит вращение пары. Но чаще удалённая звёзда вращается вокруг пары тесно связанных звёзд, которые представляют собой единое целое. Такая пара называется главной.
Конечно, тремя звёздами кратность не ограничивается. Существуют системы из четырёх, пяти и шести звёзд. Чем кратность больше, тем количество таких систем меньше. Например, звезда ε Лиры представляет собой две пары взаимосвязанные между собой, удалённое друг от друга на большое расстояние. Учёными было приблизительно подсчитано, что расстояние между парами должно в 5 и более раз превышать расстояние между звёздами внутри одной пары.
Лучшим примером шестикратной системы звёзд служит Кастор в созвездии Близнецы. В ней три пары звёзд организованно взаимодействуют между собой. Больше 6 звёзд в системе пока ещё не обнаружено.
Кратные звёзды занимают астрономов-наблюдателей не меньше чем дипскай объекты. Особенно красиво звёздные системы выглядят, когда компоненты в них имеют разный цветовой оттенок, например, один из них — красный холодный сверхгигант, а другой — горячая яркая голубая звезда. Есть множество справочников с детальными характеристиками наиболее известных и интересных для наблюдения двойных и кратных звёзд. С частью систем я вас познакомлю в отдельной статье.
Звёздная система
Звёздная система — это система, состоящая из звёзд, движущихся по замкнутой орбите, гравитационно связанных, и, возможно, имеющих планетные системы, состоящих из меньших тел (таких как планеты или астероиды). В частности, Солнечная система — это звёздная система, образованная одиночной звездой — Солнцем — и другими телами (планетами и др.), обращающимися вокруг неё.
Кратность звёздной системы ограничена. Невозможно создать долгоживущую систему из трёх, четырёх и более равноправных звёзд. Устойчивыми оказываются только иерархические системы. К примеру, чтобы в тройной системе третий компонент не был выброшен из системы, необходимо чтобы он не приближался ближе чем на 8—10 радиусов к «внутренней» двойной системе. Сам же компонент может быть как одиночной, так и ещё одной двойной звездой. [1]
Содержание
Двойные звёздные системы
Звёздные системы из двух звёзд называются двойными звёздами, или двойными звёздными системами. При отсутствии приливных эффектов, возмущений от других сил и передачи массы от одной звезды к другой, такая система устойчива, и обе звезды будут неограниченно долго двигаться по эллиптической орбите вокруг центра масс системы (см. Задача двух тел).
Системы с более чем двумя звёздами
Системы с более чем двумя звёздами также возможны: например, звёздное скопление и галактика — виды звёздных систем. Из-за большого размера этих систем, их динамика значительно сложнее, чем у двойной звезды. Однако, также возможно существование звёздных систем с небольшим (но больше двух) количеством звёзд и простой орбитальной динамикой. Эти системы называются кратными звёздными системами, или физически кратными звёздами. Кратная звёздная система, состоящая из трёх звёзд, называется тройной.
Динамическая теория
Теоретически моделирование кратной звёздной системы сложнее, чем двойной, так как рассматриваемая динамическая система (Задача N тел) может проявлять хаотическое поведение. Многие конфигурации небольших групп звёзд оказываются нестабильными, и, в конце концов, одна из звёзд приближается к другой достаточно близко и разгоняется настолько, что покидает систему. [2] Нестабильности можно избежать в системе, которую Эванс называл иерархическими. [3] В иерархической системе звёзды могут быть разделены на две группы, каждая из которых обращается по большой орбите вокруг центра масс системы. Каждая из этих групп должна также быть иерархической. Это означает, что они тоже могут быть разделены на меньшие подгруппы, которые сами являются иерархическими, и т. д.
Тройные звёздные системы
Тройные звёздные системы — наиболее распространённый тип кратных систем. Например, в издании 1999 года каталога физически кратных звёзд Токовинина, [4] 551 из 728 систем описаны как тройные. В соответствии с иерархическим принципом тройные звёздные системы обычно состоят из пары близко расположенных звёзд с более удалённым спутником.
Более высокие кратности
Примеры
Некоторые звёздные системы:
Примечания
Ссылки
Звёздные системы | |
|---|---|
| Связанные гравитационно | Галактика · Карликовая галактика · Шаровое звёздное скопление · Рассеянное звёздное скопление · Физически двойная звезда · Физически кратная звезда |
| Не связанные гравитационно | Звёздный поток · Звёздная ассоциация · Движущаяся группа звёзд · Звезда-бегун · Сверхскоростная звезда |
| Связанные визуально | Оптически двойная звезда · Оптически кратная звезда · Созвездие · Астеризм · Звёздное облако |
Полезное
Смотреть что такое «Звёздная система» в других словарях:
Шаула (звёздная система) — У этого термина существуют и другие значения, см. Шаула. Шаула Звезда Наблюдательные данные (Эпоха J2000.0) Прямое восхождение 17ч 33м 36,6с / 17ч 33м 42,6с … Википедия
Звёздная астрономия — раздел астрономии, исследующий общие закономерности строения, состава, динамики и эволюции звёздных систем и изучающий реализацию этих закономерностей в нашей звёздной системе Галактике (См. Галактика). Конкретные исследования др.… … Большая советская энциклопедия
Звёздная величина — Звёздная величина, (блеск) безразмерная числовая характеристика яркости объекта. Обычно термин применяется к небесным светилам. Звёздная величина характеризует поток энергии (энергию всех фотонов в секунду) на единицу площади от… … Википедия
Абсолютная звёздная величина — (M) для звёзд определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая (учитывающая полное излучение во всех диапазонах электромагнитных волн) звёздная… … Википедия
Звездная система — Сириус A и Сириус B, фото получено телескопом «Хаббл» Звёздная система это система, состоящая из звезд, движущихся по замкнутой орбите, гравитационно связанных, и, возможно, имеющих планетные системы, состоящих из меньших тел (таких как планеты… … Википедия
Фотометрическая система UBV — UBV изображение, сделанное в лоуэлловской обсерватории, в котором голубой цвет представляет U диапазон (ультрафиолет), зеленый цвет B диапазон (синий) и красный цвет V диапазон (видимый свет). Система UBV (система Дж … Википедия
Звёздная эволюция — в астрономии последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени… … Википедия
Солнечная система — в представлении художника. Масштабы расстояний от Солнца не соблюдены. Общие характеристики Возраст … Википедия
Звёздная машина — Диаграмма звёздной машины класса C (в масштабе), построенной возле звезды, похожей на Солнце. Она состоит из частичного роя Дайсона, включающего 5 колец Дайсона, собирающих солнечную энергию (компонент класса B) и боль … Википедия
Звёздная тень — Звёзды холодные игрушки Автор: Сергей Лукьяненко Жанр: Отечественная фантастика Язык оригинала: русский Серия: Звездный лабиринт Издательство: АСТ Выпуск: 2004 Страниц: 382 … Википедия



























Звёздные системы