что означает что макроскопическое тело заряжено и какой знак имеет

§ 1.1. Заряженные тела. Электризация тел

Мы вначале рассмотрим наиболее простой случай, когда электрически заряженные тела неподвижны. Раздел электродинамики, посвященный изучению покоящихся электрически заряженных тел, называют электростатикой.

Каким образом макроскопические тела приобретают электрический заряд? Об этом сейчас будет рассказано.

Заряд макроскопического тела

В электродинамике, созданной Максвеллом, рассматриваются электромагнитные взаимодействия не отдельных заряженных элементарных частиц, а макроскопических тел.

Макроскопические тела, как правило, электрически нейтральны. Нейтрален атом любого вещества, так как число электронов в нем равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Тело больших размеров заряжено в том случае, когда оно содержит избыточное количество элементарных частиц с одним знаком заряда. Отрицательный заряд тела обусловлен избытком электронов по сравнению с протонами, а положительный заряд — их недостатком.

Электризация тел

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного*.

* Здесь и в дальнейшем для краткости мы часто будем говорить о зарядах, перемещении зарядов и т. д. В действительности же при этом имеются в виду заряженные тела (или частицы), перемещение заряженных частиц и т. д., так как заряда без частицы не существует.

Проще всего это сделать с помощью трения. Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц — электронов — перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно.

С помощью несложного опыта можно доказать, что при электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.

Возьмем электрометр (электроскоп в металлическом корпусе) с укрепленной на его стержне металлической сферой с отверстием и две пластины на длинных рукоятках: одну из эбонита, а другую — из плексигласа. При трении друг о друга пластины электризуются. Внесем одну из пластин внутрь сферы, не касаясь ее стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберется на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнется от стержня (рис. 1.1).

что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть фото что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть картинку что означает что макроскопическое тело заряжено и какой знак имеет. Картинка про что означает что макроскопическое тело заряжено и какой знак имеет. Фото что означает что макроскопическое тело заряжено и какой знак имеет

Если поместить внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки, причем на тот же угол, что и в первом опыте. Опустив обе пластины внутрь сферы, мы не обнаружим отклонения стрелки (рис. 1.2). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку. Этот вывод непосредственно вытекает из закона сохранения заряда.

Как происходит электризация тел?

Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому.

Источник

§ 1.1. Заряженные тела. Электризация тел

Заряд макроскопического тела

В электродинамике, созданной Максвеллом, рассматриваются электромагнитные взаимодействия не отдельных заряженных элементарных частиц, а макроскопических тел.

Макроскопические тела, как правило, электрически нейтральны. Нейтрален атом любого вещества, так как число электронов в нем равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Тело больших размеров заряжено в том случае, когда оно содержит избыточное количество элементарных частиц с одним знаком заряда. Отрицательный заряд тела обусловлен избытком электронов по сравнению с протонами, а положительный заряд — их недостатком.

Электризация тел

Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного*.

Проще всего это сделать с помощью трения. Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц — электронов — перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно.

С помощью несложного опыта можно доказать, что при электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.

Возьмем электрометр (электроскоп в металлическом корпусе) с укрепленной на его стержне металлической сферой с отверстием и две пластины на длинных рукоятках: одну из эбонита, а другую — из плексигласа. При трении друг о друга пластины электризуются. Внесем одну из пластин внутрь сферы, не касаясь ее стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберется на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнется от стержня (рис. 1.1).

что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть фото что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть картинку что означает что макроскопическое тело заряжено и какой знак имеет. Картинка про что означает что макроскопическое тело заряжено и какой знак имеет. Фото что означает что макроскопическое тело заряжено и какой знак имеет

Если поместить внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки, причем на тот же угол, что и в первом опыте. Опустив обе пластины внутрь сферы, мы не обнаружим отклонения стрелки (рис. 1.2). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку. Этот вывод непосредственно вытекает из закона сохранения заряда.

Как происходит электризация тел?

Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому.

Однако в последнее время это объяснение электризации трением стало вызывать возражения. Не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах. Сотрудниками физико-технического института в Санкт-Петербурге было предложено другое объяснение.

Для ионного кристалла LiF (изолятора) это объяснение выглядит так. При образовании кристалла возникают различного рода дефекты, в частности вакансии — незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных — фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.

А могут ли электризоваться при трении два одинаковых изолятора, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий.

Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить.

Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.

Таким образом, мы видим, что такое простое, казалось бы, явление, как электризация трением, содержит немало загадочного.

Электризация тел и ее применение в технике

Значительная электризация происходит при трении синтетических тканей. Снимая нейлоновую рубашку в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки. С подобным явлением приходится считаться на производстве. Так, нити пряжи на текстильных фабриках электризуются за счет трения, притягиваются к веретенам и рвутся. Пряжа притягивает пыль и загрязняется. Поэтому необходимо принимать различные меры против электризации нитей.

Разматывая в типографии большие рулоны бумаги, рабочие надевают резиновые перчатки, чтобы предохранить себя от электрических разрядов, возникающих между наэлектризованной бумагой и руками.

Большие электрические заряды накапливаются при трении шин об асфальт при сухой погоде. Возникает опасность проскакивания искры. Поэтому сзади машин — цистерн для горючего — прикрепляют металлические цепи, волочащиеся по дороге. Иногда даже легковые машины снабжены эластичной лентой из проводяш;ей резины.

За счет электризации трением работает обычная электростатическая машина.

Явление электризации тел при тесном контакте используется в современных электрокопировальных установках (типа «Эра», «Ксерокс» и др.).

Так, в одной из этих установок черный смоляной порошок перемешивается с мельчайшими стеклянными шариками. При этом шарики заряжаются положительно, а частицы порошка — отрицательно. Вследствие притяжения они покрывают поверхность шариков тонким слоем.

Копируемый текст или чертеж проецируется на тонкую селеновую пластину, поверхность которой заряжена положительно. Пластина покоится на отрицательно заряженной металлической поверхности. Под действием света пластина разряжается, и положительный заряд остается лишь на участках, соответствующих темным местам изображения. Затем пластина покрывается тонким слоем шариков. Благодаря притяжению разноименных зарядов смоляной порошок притягивается к положительно заряженным участкам пластины. После этого шарики стряхивают и, плотно прижав к пластине лист бумаги, получают на ней отпечаток. Отпечаток закрепляют с помош;ью нагревания.

Макроскопическое тело электрически заряжено в том случае, если оно содержит, избыточное количество элементарных частиц с одним знаком заряда. Отрицательный заряд тела обусловлен избытком электронов по сравнению с протонами, а положительный — недостатком электронов.

Вопросы для самопроверки

* Здесь и в дальнейшем для краткости мы часто будем говорить о зарядах, перемещении зарядов и т. д. В действительности же при этом имеются в виду заряженные тела (или частицы), перемещение заряженных частиц и т. д., так как заряда без частицы не существует.

Источник

Что означает что макроскопическое тело заряжено и какой знак имеет

Вначале рассмотрим наиболее простой случай, когда электрически заряженные тела находятся в покое.

Раздел электродинамики, посвящённый изучению условий равновесия электрически заряженных тел, называют электростатикой.

Что такое электрический заряд?
Какие существуют заряды?

Со словами электричество, электрический заряд, электрический ток вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» Само понятие заряд — это основное, первичное понятие, которое не сводится на современном уровне развития наших знаний к каким-либо более простым, элементарным понятиям.

Попытаемся сначала выяснить, что понимают под утверждением: «Данное тело или частица имеет электрический заряд».

Все тела построены из мельчайших частиц, которые неделимы на более простые и поэтому называются элементарными.

что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть фото что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть картинку что означает что макроскопическое тело заряжено и какой знак имеет. Картинка про что означает что макроскопическое тело заряжено и какой знак имеет. Фото что означает что макроскопическое тело заряжено и какой знак имеет

Элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения. С увеличением расстояния между частицами сила тяготения убывает обратно пропорционально квадрату этого расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения.

Так, в атоме водорода, изображённом схематически на рисунке 14.1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными.

Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействие заряженных частиц называется электромагнитным.

Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

Электрический заряд элементарной частицы — это не особый механизм в частице, который можно было бы снять с неё, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определённых силовых взаимодействий между ними.

Мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Эти законы непросты, и изложить их в нескольких словах невозможно. Поэтому нельзя дать достаточно удовлетворительное краткое определение понятию электрический заряд.

Два знака электрических зарядов.

Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам, означает, что в природе есть частицы с электрическими зарядами противоположных знаков; в случае зарядов одинаковых знаков частицы отталкиваются, а в случае разных притягиваются.

Заряд элементарных частиц — протонов, входящих в состав всех атомных ядер, называют положительным, а заряд электронов — отрицательным. Между положительными и отрицательными зарядами внутренних различий нет. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.

Элементарный заряд.

Кроме электронов и протонов, есть ещё несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно малое время, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в 11 классе.

К частицам, не имеющим электрического заряда, относится нейтрон. Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра. Если элементарная частица имеет заряд, то его значение строго определено.

Заряженные тела. Электромагнитные силы в природе играют огромную роль благодаря тому, что в состав всех тел входят электрически заряженные частицы. Составные части атомов — ядра и электроны — обладают электрическим зарядом.

Непосредственно действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны.

Атом любого вещества нейтрален, так как число электронов в нём равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда. Так, отрицательный заряд тела обусловлен избытком числа электронов по сравнению с числом протонов, а положительный — недостатком электронов.

Для того чтобы получить электрически заряженное макроскопическое тело, т. е. наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного или перенести на нейтральное тело отрицательный заряд.

Это можно сделать с помощью трения. Если провести расчёской по сухим волосам, то небольшая часть самых подвижных заряженных частиц — электронов перейдёт с волос на расчёску и зарядит её отрицательно, а волосы зарядятся положительно.

Равенство зарядов при электризации

С помощью опыта можно доказать, что при электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть фото что означает что макроскопическое тело заряжено и какой знак имеет. Смотреть картинку что означает что макроскопическое тело заряжено и какой знак имеет. Картинка про что означает что макроскопическое тело заряжено и какой знак имеет. Фото что означает что макроскопическое тело заряжено и какой знак имеет

Возьмём электрометр, на стержне которого укреплена металлическая сфера с отверстием, и две пластины на длинных рукоятках: одна из эбонита, а другая из плексигласа. При трении друг о друга пластины электризуются.

Внесём одну из пластин внутрь сферы, не касаясь её стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберётся на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнётся от стержня электрометра (рис. 14.2, а).

Если внести внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки от стержня, причём на тот же угол, что и в первом опыте.

Опустив обе пластины внутрь сферы, мы вообще не обнаружим отклонения стрелки (рис. 14.2, б). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку.

Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

С явлением электризации приходится считаться на производстве. Так, нити пряжи на текстильных фабриках электризуются за счёт трения, притягиваются к веретёнам и роликам и рвутся. Пряжа притягивает пыль и загрязняется.

В типографиях происходит электризация бумаги при печати, и листы слипаются. Чтобы это не происходило, применяют специальные устройства для стекания заряда. Однако электризация тел при тесном контакте иногда используется, например, в различных электрокопировальных установках и др.

Закон сохранения электрического заряда.

Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда. Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для изолированной системы.

В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

Закон сохранения заряда имеет глубокий смысл. Если число заряженных элементарных частиц не меняется, то выполнение закона сохранения заряда очевидно. Но элементарные частицы могут превращаться друг в друга, рождаться и исчезать, давая жизнь новым частицам.

Однако во всех случаях заряженные частицы рождаются только парами с одинаковыми по модулю и противоположными по знаку зарядами; исчезают заряженные частицы тоже только парами, превращаясь в нейтральные. И во всех этих случаях алгебраическая сумма зарядов остаётся одной и той же.

Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.

Источник

Электрический заряд

Реферат по электротехнике

Выполнил: Агафонов Роман

Лужский агропромышленный колледж

Дать краткое, удовлетворительное во всех отношениях определение заряда невозможно. Мы привыкли находить понятные нам объяснения весьма сложных образований и процессов вроде атома, жидких кристаллов, распределения молекул по скоростям и т.д. А вот самые основные, фундаментальные понятия, нерасчленимые на более простые, лишенные, по данным науки на сегодняшний день, какого-либо внутреннего механизма, кратко удовлетворительным образом уже не пояснить. Особенно если объекты непосредственно не воспринимаются нашими органами чувств. Именно к таким фундаментальным понятиям относится электрический заряд.

Попытаемся вначале выяснить не что такое электрический заряд, а что скрывается за утверждением данное тело или частица имеют электрический заряд.

Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу. Согласно закону всемирного тяготения сила притяжения сравнительно медленно убывает по мере увеличения расстояния между ними: обратно пропорционально квадрату расстояния. Кроме того, большинство элементарных частиц, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила в огромное число, раз превосходит силу тяготения. Так, в атоме водорода, схематически изображенном на рисунке 1, электрон притягивается к ядру (протону) с силой, в 1039 раз превышающей силу гравитационного притяжения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *