что такое сетевая бд какой пример сетевой бд можно привести
Сетевые базы данных
Вы будете перенаправлены на Автор24
Сетевая модель данных
Базы данных являются моделью реального мира, потому в них находят свое представление объекты реального мира и связи между ними. Основой для сетевой модели данных является понятие ориентированного графа. В математике графом называется модель, состоящая из узлов и ребер.
Узлами являются объекты сетевой базы данных, а ребрами – связи между объектами. В реальном мире связи между объектами делятся на три типа:
Сетевая модель поддерживает только два из этих типов: «один-к-одному» и «один-ко-многим». Ребра направленного графа показывают не только саму связь, то и тип связи.
Сетевая модель данных состоит из следующих структурных элементов:
В реляционной модели данных аналогичное понятие отсутствует.
Набор записей – структура, моделирующая связь между двумя типами записей. Если набор реализует отношение «один-ко-многим», то один тип записей в наборе называется «владельцем», другой – «подчиненным». Отношение «один-ко-многим» реализуется от владельца к подчиненным.
Например, между типами «Специальность» и «Студент» нужно установить связь типа «один-ко-многим», потому что на одной специальности учится много студентов. Тогда набор будет выглядеть, как показано на рисунке.
Готовые работы на аналогичную тему
Сетевая база данных может состоять из любого количества записей и наборов разных типов. Две записи могут быть связаны любым количеством наборов, но в каждом наборе может быть только одна запись-владелец. Один и тот же тип записей может быть владельцем в одном наборе и подчиненным в другом наборе. Типа записи может вообще не входить ни в один набор.
Управление данными в сетевой базе данных
Все операции в сетевых базах производятся с записью, которая является текущей. Текущая запись выбирается путем навигационных операций. Навигационными являются следующие операции:
После выбора текущей записи становятся возможными следующие операции:
Достоинства и недостатки модели
Сетевая модель данных достаточно хорошо стандартизирована. В 1969 году консорциум CODASYL предложил спецификацию формального языка для описания сетевой модели. Модель обладает высокой выразительной способностью, так как позволяет устанавливать сложные отношения между данными. Сетевые базы данных отличаются высоким быстродействием и универсальностью.
С другой стороны пользователи сетевых баз данных ограничены использованием той структуры данных, которую определил для них разработчик. Поэтому сетевые базы данных лишены гибкости – любое изменение структуры базы данных влечет перестройку всех записей путем введения новых указателей. Сетевые базы данных требуют сложной структуры памяти. В сетевых базах данных довольно трудно контролировать целостность данных.
Использование сетевой модели в современных информационных технология
Сетевая модель данных предшествовала реляционной и потому долгое время считалась устаревшей. Однако, практика показала, что для структурирования больших объемов трудноформализуемых данных сетевая модель подходит лучше реляционной. Например, сетевая организация данных лежит в основе глобальной сети Интернет, а реляционную модель с этой целью использовать невозможно.
В последние годы на рынке ИТ стали появляться новые программные продукты, основанные на сетевой модели данных. Среди них инструментальная система управления базами данных CronosPRO, сетевая объектно-ориентированная база знаний Cerebrum. Cистема управления базами данных GT.M поддерживает несколько моделей данных одновременно, в том числе и сетевую.
Сетевые базы данных.
в Базы данных 14.01.2018 0 11,441 Просмотров
Сетевая база данных – это модель данных, где несколько записей или файлов могут быть связаны с несколькими владельцами файлов и наоборот. Модель может рассматриваться как перевернутое дерево, где каждый член – это отрасли, связанные с владельцем, который находится в нижней части дерева. По сути, это отношения в чистой форме, где один элемент может указывать на множество элементов данных, и само по себе может быть указано несколько элементов данных.
Модель сетевой базы данных позволяет каждой записи иметь несколько родителей и несколько дочерних записей, которые, когда они визуализируются, принимают форму сетевой структуры сетевых записей. В отличие от иерархической модели данных она может иметь только одну родительскую запись, но может иметь много дочерних записей.
Это свойство иметь несколько ссылок применяется двумя способами: схема и сама база данных может рассматриваться как обобщенный график типов записей, которые связаны типами отношений. Основное достоинство базы данных заключается в том, что она позволяет получить более естественное моделирование связей между записями, в отличие от иерархической модели. Но реляционная модель базы данных начала завоевывать всё большую популярность перед сетевой и иерархической моделями из-за её гибкости и производительности, что стало ещё более очевидным, когда аппаратная технология стала ещё быстрее.
Сетевая модель базы данных
Улучшенная форма иерархической модели данных, сетевая модель представляет данные в виде дерева записей. Связи между таблицами (отчеты) выражаются в виде наборов. В наборе есть одна родительская запись (владелец) и одна или более дочерних записей (члены). Связанные записи в наборе напрямую связаны с указателями, а не путём сопоставления повторяющихся столбцов, как и в случае с реляционной моделью данных.
Записи, связанные с одним владельцем
Модель сетевой базы данных позволяет записям из более чем одной таблицы быть связанными с одним владельцем с записями из другой таблицы. Это обеспечивает определенное преимущество над реляционной базой при запросе результатов из нескольких внешних ключей таблиц, связанных с одним первичным ключом таблицы. В базе данных медиа-коллекции, таких как альбом песен и видео записи, все они могут быть членами собственника в одном комплекте, как показано на рисунке 2. Это означает, что оба альбома и фильмы для данного собственника могут быть получены за одну операцию. При этом отпадает необходимость хранить и потенциально изменять порядок временных результатов в середине операции, что приводит к повышению производительности запросов. Без необходимости хранить и сохранять дубликаты столбцы базы данных также помогают уменьшить дисковое пространство и память.
Исследование эффективности
Реальные данные показывают, что прирост производительности и экономия ресурсов с использованием сетевых баз данных может быть довольно значительной. В структуре данных, используются трехсторонние отношения между художником, альбомом и таблицами песни, наши разработчики сравнили изменения данных и выполнение запросов в реляционной модели и сетевой базе данных с помощью настольных систем и небольших, потребительских устройств. Они обнаружили, что сетевая модель использует на 29% меньше дискового пространства для хранения одинакового количества записей и связей, чем реляционная модель данных. Все сбережения при хранении можно отнести к замене ключевых показателей артист-альбом и альбом-песни зарубежные на установленные указатели.
Удаление этих структур данных, оказало огромное влияние на требования к хранению, поскольку типичный индекс B-дерева требует примерно в 1,3 раза больше пространства, чем индексы. Они также обнаружили, что сетевая модель базы данных увеличила до 23 раз лучше производительность вставки и выросла в 123 раза быстрее производительность запросов, как показано в таблице 1.
Сетевая база данных против реляционной базы данных
Различные требования управления означают разные структуры данных и различные методы хранения и доступа к данным. В результате система может состоять из нескольких таблиц без связей или сотни таблиц, связанных со сложными взаимосвязями. В то время как реляционная модель данных является стандартом де-факто, теперь мы знаем, что она не всегда обеспечивает оптимальные решения для более сложных задач управления данными. Выбор подходящей модели данных, или даже объединение нескольких моделей, может дать гораздо более эффективный результат, чем реляционная модель данных работающая в одиночку. В результате достигается значительная экономия затрат, повышение качества и увеличение пользовательского опыта.
Вывод
В то время как реляционная модель данных является очень популярной из-за её простоты использования, она не требует ключа и индексов таблицы, что существенно замедляет работу приложения. Сетевая модель базы данных обеспечивает более быстрый доступ к данным и является оптимальным методом для быстрого применения. Так что если Вы нажмете на любимого артиста, а также если хотите посмотреть список для поиска лишних альбомов и просмотреть названия фильмов на вашем медиа-плеере, это может быть создано сетевыми моделями СУБД.
Сетевая модель данных
Материал из ПИЭ.Wiki
Содержание
Историческая справка
В 1971 группа DTBG (Database Task Group) представила в американский национальный институт стандартов отчет, который послужил в дальнейшем основой для разработки сетевых систем управления базами данных. Стандарт сетевой модели был создан в 1975 году организацией CODASYL (Conference of Data System Languages), которая определила базовые понятия модели и формальный язык описания.
Типичным представителем систем, основанных на сетевой модели данных, является СУБД IDMS (Integrated Database Management System), разработанная компанией Cullinet Software, Inc. и изначально ориентированная на использования на мейнфреймах компании IBM. Архитектура системы основана на предложениях DBTG организации CODASYL. В настоящее время IDMS принадлежит компании Computer Associates.
Основные элементы сетевой модели данных
Особенности построения сетевой модели данных
Реализация групповых отношений в сетевой модели осуществляется с использованием указателей (адресов связи или ссылок), которые устанавливают связь между владельцем и членом группового отношения. Запись может состоять в отношениях разных типов (1:1, 1:N, M:N). Заметим, что если один из вариантов установления связи 1:1 очевиден (в запись – владелец отношения, поля которой соответствуют атрибутам сущности, включается дополнительное поле – указатель на запись – член отношения), то возможность представления связей 1:N и M:N таким же образом весьма проблематична. Поэтому наиболее распространенным способом организации связей в сетевых СУБД является введение дополнительного типа записей, полями которых являются указатели.
Преимущества
Недостатки
Операции над данными сетевой модели
Использования сетевой модели
Сетевые модели также создавались для мало ресурсных ЭВМ. Это достаточно сложные структуры, состоящие из «наборов» – поименованных двухуровневых деревьев. «Наборы» соединяются с помощью «записей-связок», образуя цепочки и т.д. При разработке сетевых моделей было выдумано множество «маленьких хитростей», позволяющих увеличить производительность СУБД, но существенно усложнивших последние. Прикладной программист должен знать массу терминов, изучить несколько внутренних языков СУБД, детально представлять логическую структуру базы данных для осуществления навигации среди различных экземпляров, наборов, записей и т.п. Один из разработчиков операционной системы UNIX сказал «Сетевая база – это самый верный способ потерять данные».
СУБД, поддерживающие сетевую модель, широко использовались на вычислительных системах серии IBM 360/370 (ЕС ЭВМ). В качестве примеров таких систем можно указать IDMS, UNIBAD (БАНК), аналоги СЕДАН, СЕТОР. На персональных компьютерах сетевые СУБД не получили широкого распространения. Примером сетевой СУБД для персонального компьютера является db_VISTA III. Отметим, что система db_VISTA реализована на языке С и поэтому является переносимой. Система может эксплуатироваться на ПЭВМ типа IBM PC, SUN, Macintosh.
Пример сетевой базы данных
На рисунке показан простой пример схемы сетевой БД.
На этом рисунке показаны три типа записи: Отдел, Служащие и Руководитель и три типа связи: Состоит из служащих, Имеет руководителя и Является служащим.
В типе связи Состоит из служащих типом записи-предком является Отдел, а типом записи-потомком – Служащие (экземпляр этого типа связи связывает экземпляр типа записи Отдел со многими экземплярами типа записи Служащие, соответствующими всем служащим данного отдела).
В типе связи Имеет руководителя типом записи-предком является Отдел, а типом записи-потомком – Руководитель (экземпляр этого типа связи связывает экземпляр типа записи Отдел с одним экземпляром типа записи Руководитель, соответствующим руководителю данного отдела).
Наконец, в типе связи Является служащим типом записи-предком является Руководитель, а типом записи-потомком – Служащие (экземпляр этого типа связи связывает экземпляр типа записи Руководитель с одним экземпляром типа записи Служащие, соответствующим тому служащему, которым является данный руководитель).
СЕТЕВАЯ МОДЕЛЬ БАЗ ДАННЫХ
База данных – это упорядоченное хранение какой-либо информации. То есть, информация хранится в упорядоченном или систематизированном виде. Видов систематизации, упорядочивания и хранения информации может быть множество. Каждый из способов хранения информации отвечает каким-либо специфическим требованиям или предназначен для выполнения каких-либо определенных действий [4].
Основой любой базы данных является модель данных. Модель данных – это совокупность структур данных и операций их обработки. С ее помощью могут быть представлены информационные объекты и их взаимосвязи. Выделяют три основных типа моделей данных: иерархическую, сетевую и реляционную.
Иерархическая модель представляет собой совокупность элементов, расположенных в порядке их подчинения от общего к частному.
То есть, в иерархической БД каждый объект представляется в виде определенной сущности, то есть, у этой сущности могут быть дочерние элементы, родительские элементы, а у тех дочерних могут быть еще дочерние элементы, но есть один объект, с которого все начинается. Получается своеобразное структурное дерево (граф).
Сетевые базы данных, являются своеобразной модификацией иерархических баз данных. Отличаются от иерархических лишь тем, что у дочернего элемента может быть несколько предков, то есть, элементов стоящих выше него. Ниже на рисунке 1 приведен пример структуры сетевых баз данных.
Главной особенностью реляционных баз данных является, то, что объекты внутри таких баз данных хранятся в виде набора двумерных таблиц. То есть, таблица состоит из набора столбцов, в котором может указываться: название, тип данных (дата, число, строка, текст и так далее). Еще одной важной особенность реляционных БД является, то, что число столбцов фиксировано, то есть, структурабазы данных известна заранее, а вот число строк или рядов в реляционных базах данных ничем не ограничено, если говорить грубо, то строки в реляционных базах данных и есть объекты, которые хранятся в базе данных [2].
ИСТОРИЯ ВОЗНИКНОВЕНИЯ СЕТЕВОЙ МОДЕЛИ ДАННЫХ. ОПИСАНИЕ
На разработку этого стандарта большое влияние оказал американский ученый Чарльз Уильям Бахман. Основные принципы сетевой модели данных были разработаны в середине 60-х годов, эталонный вариант сетевой модели данных описан в отчетах рабочей группы по языкам баз данных (COnference on DAta SYstem Languages) CODASYL в 1971г.
Наиболее известной из таких систем была IDMS корпорации Computer Associates International, Inc [7].
Сети – это естественный способ представления отношений между объектами базы данных и связей между этими объектами. Под словом объекты следует понимать таблицы баз данных или сущности.
Сетевые базы данных опираются на математику графов, конкретнее, сетевую модель данных можно представить в виде ориентированного графа. Направленный граф состоит из узлов и ребер. Узлы направленного графа – это ни что иное, как объекты сетевой базы данных, а ребра такого графа показывают связи между объектами сетевой модели данных, причем ребра показывают не только саму связь, но и тип связи (связь один к одному или связь один ко многим).
Рисунок 1 – Пример структуры сетевой базы данных
СТРУКТУРА СЕТЕВЫХ БАЗ ДАННЫХ
Сетевые базы данных имеют достаточно простую структуру. Структура состоит из четырех компонентов, то есть в сетевой модели используют четыре типа структур данных. Два из которых являются главными и два, если можно так сказать, не главными. Главные типы структур сетевых данных – это запись и набор [6]. Вспомогательные типы структур сетевой модели данных, которые используются для построения главных структур – это элемент данных и агрегат данных, на рисунке 2 представлена вся структура сетевых БД:
Рисунок 2 – Пример структуры сетевых баз данных
Рассмотрим каждую структуру более подробно:
Элемент данных – это наименьшая информационная именованная единица данных, доступная пользователю, если провести аналогию с файловой системой, то это поле в файловой системе, а если проводить аналогию с реляционной базой данных, то элемент данных – один столбец таблицы реляционной БД. Если говорить точнее, то это подстолбец.
Агрегат данных – это именованная совокупность данных внутри одной записи. Аналогию с реляционными БД тут не проведешь, поскольку агрегат данных – это столбец над столбцами, который объединяет элементы данных по логике их содержимого, для наглядности выше сказанного, рассмотрим рисунок 3:
Рисунок 3 – Пример агрегата данных сетевой модели данных
На данном рисунке видно, что дата – это агрегат данных структуры сетевой модели, а день, месяц и год – это элемент данных сетевой БД.
Запись в сетевой модели данных – это конечный уровень обобщения данных, что-то наподобие таблицы в реляционной базе данных. Каждая запись в сетевой базе данных должна обладать или содержать в себе, как минимум один именованный элемент данных, если элементов внутри записи более одного, то каждый элемент данных должен обладать уникальным форматом.
Разберемся со структурой сетевых баз данных на примере, поскольку так будет более понятно и доступно. Допустим, что мы хотим создать запись в сетевую базу данных, назовем ее «Сотрудник», в которую обязательно должен входить агрегат данных, который представлен на рисунке выше, его мы назовем «Дата». В эту запись нам необходимо будет добавить: табельный номер, ФИО и адрес сотрудника. Выглядеть такая запись в сетевой модели данных будет таким образом, как на представлено на рисунке 4:
Рисунок 4 – Пример записи сетевой базы данных
Прежде, чем переходить к набору записей, нужно разобраться с тем, что такое тип записи и для чего нужен тип записи в сетевой базе данных. И так, тип записей – это совокупность логически связанных экземпляров записей. Проще сказать – это все записи, которые связаны между собой по смыслу и, которые дополняют друг друга. Если переложить термин тип записей на реальный мир, то это информационная модель (иначе, полное описание) какого-либо объекта из реального мира, например сотрудника фирмы.
Как видно из рисунка 4: в качестве элементов данных сетевой модели могут быть использованы только простые типы, если хотите данных, но это не совсем так. Потому что в качестве агрегатов данных можно использовать сложные типы. Сложные типы в структуре сетевых баз данных бывают двух видов: вектор и повторяющаяся группа. Агрегат типа вектор соответствует линейному набору элементов данных, такой агрегат уже был представлен, как «Дата» (рисунок 3).
Агрегат типа повторяющаяся группа – это совокупность векторов данных (то есть несколько векторов). Для большей ясности представим новый агрегат данных на рисунке 5, который назовем «Товар»:
Рисунок 5 – Пример агрегата типа повторяющаяся группа
Товары обычно хранятся на складе или их продают, обычно по нескольку штук. То есть имеется в виду, что агрегат типа повторяющаяся группа – это несколько агрегатов типа вектор, объединенных вместе. Предположим, у нас покупают 5 товаров, значит, если наш агрегат «Товар» будет иметь тип повторяющаяся группа, то он будет состоять из 5 агрегатов типа вектор.
Перейдем к дальнейшему рассмотрению структуры сетевой модели данных.
Перед нами стоит задача: осуществить логическую связь между двумя этими записями, то есть определить какая запись будет управляемой, а какая управляющей. Логично предположить, что запись «Отдел» должна быть управляющей, поскольку сотрудник работает в отделе, а не отдел в сотруднике. И понятно, что связь между этими записями должна быть один-ко-многим, потому что отдел один, а сотрудников много, назовем эту связь «Работа». И так, мы приходим к выводу, что набор записей сетевой модели данных определяет: управляющую запись, в нашем случае это «Отдел», подчиненную запись, которую мы назвали «Сотрудник», а так же тип связи между этими записями, которую мы обозвали «Работа». «Работа» — это не только имя связи, но еще и метка, которая именует сам набор данных сетевой модели. Впрочем, рисунок должны внести ясность в мои несколько путаные пояснения:
Рисунок 6 – Пример набора записей сетевой модели данных
В данном случае связь один-ко-многим говорит нам о том, что с одним экземпляром записи «Отдел» может быть связано ноль, один или несколько экземпляров записи «Сотрудник». Экземпляр записи – это что-то наподобие кортежа (строки таблицы) из реляционной БД. Используя понятия сетевой модели данных, приведенные выше, можно нарисовать набор записей по-другому. На рисунке можно отобразить логические типы данных для обеих записей, структуру записей сетевой модели данных и указать связь между записями, которую мы назвали «Работа»:
Теперь обобщим все то, что было написано выше про структуру сетевой базы данных, собственно обобщает все база данных.
База данных сетевой модели данных – это именованная совокупность экземпляров записей различного типа и экземпляров наборов, хранящих в себе типы связей между записями. Проще говоря, это все записи и все связи между записями [3].
Таким образом мы познакомились со структурой сетевой модели данных, рассмотрели несколько примеров и ознакомились с самыми простыми основами проектирования сетевых баз данных.
ОПЕРАЦИИ НАД ДАННЫМИ
Навигационные операции сетевых баз данных осуществляют переход по связям, определенных в схеме баз данных, в результате таких переходов определяется запись, которую называют текущей (запись сетевой модели, с которой мы будем работать). К навигационным операциям можно отнести:
Найти конкретную запись в наборе однотипных записей и сделать ее текущей;
Перейти от записи-владельца к записи-члену в некотором наборе;
Перейти к следующей записи в некоторой связи;
Перейти от записи-члена к владельцу по некоторой связи.
При помощи операций модификации сетевых баз данных осуществляется добавление новых записей данных, добавление новых наборов данных, удаление записей данных и наборов записей, модификация агрегатов и элементов данных. Для реализации этих операций в системе текущее состояние детализируется путем запоминания трех его составляющих: текущего набора, текущего типа записи, текущего экземпляра типа записи. В такой ситуации возможны следующие операции:
Извлечь текущую запись в буфер прикладной программы для обработки;
Заменить в извлеченной записи значения указанных элементов данных на заданные новые их значения;
Запомнить запись из буфера в БД;
Создать новую запись;
Включить текущую запись в текущий экземпляр набора;
Исключить текущую запись из текущего экземпляра набора.
ПРЕОБРАЗОВАНИЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ В СЕТЕВУЮ МОДЕЛЬ ДАННЫХ
Сетевую модель данных можно легко получить из концептуальной модели, причем нужно соблюсти всего лишь одно условие: в концептуальной модели данных должны использоваться только бинарные связи, которые принадлежат к типам: «один-к-одному» или «один-ко-многим». При этом вместо сущностей концептуальной модели данных следует использовать типы записей сетевой базы данных, собственно, имена сущностей из одной будут являться именами типов записей другой модели данных. Атрибуты, которые есть у сущностей (иначе столбцы таблицы) превращаются в поля записей сетевой модели данных, а связи между сущностями становятся связями между типами записей.
Бинарные связи концептуальной модели данных без затруднений переносятся на сетевую модель данных. Связь один-ко-многим переносится следующим образом: тип записи со стороны один становится управляющей записью, а тип записи со стороны многим становится подчиненной записью. Для связи один-к-одному запись владелец и подчиненная запись определяется произвольно.
Механизмы поддержания целостности данных в базах данных любой СУБД нужны для того, чтобы избежать всевозможных ошибок, связанных с манипуляцией данными, эти ошибки называются аномалиями:
Аномалия добавления данных в таблицу;
Аномалия модификации данных таблицы;
Аномалия удаления данных из таблицы.
С аномалиями баз данных можно бороться по-разному, например, привести базу данных к третьей нормальной форме или воспользоваться механизмами поддержания целостности данных, реализованными в СУБД. На самом деле, ни одна СУБД в мире не знает о том, что такое нормальная форма, поэтому за нормализацию отвечает разработчик баз данных [5].
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ СЕТЕВОЙ МОДЕЛИ ДАННЫХ
Достоинством сетевой модели данных является ее быстродействие в отличие от иерархической БД, гибкость в хранении данных, универсальность в сравнении с другими моделями, а также возможность доступа к данным через значения нескольких отношений.
Среди недостатков сетевых СУБД следует особо выделить проблему обеспечения сохранности информации в БД, а также достаточно сложную структуру памяти.
Еще один немаловажный недостаток сетевой модели данных – высокая жесткость схемы БД. При изменении структуры БД ведет за собой перестройку всей базы данных. То есть, при изменении структуры данных нужно изменять и приложение.
С ростом популярности СУБД появилось множество различных моделей данных. У каждой из которых есть как плюсы, так и минусы, которые сыграли ключевую роль в развитии реляционной модели данных, появившейся благодаря стремлению упростить и упорядочить первые модели данных.
Современные базы данных ориентированы на определенную предметную область и организованы на основе некоторого подмножества данных. Модели данных используются, как для концептуального, так и для логического и физического представления данных.
Основное различие между этими моделями данных состоит в способах описания взаимодействий между объектами и атрибутами.
Возможности баз данных полезны в областях, связанных с долговременным управлением информацией, таких как электронные библиотеки и хранилища данных, и так далее.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Алексеев Е.Г., Богатырев С.Д. Информатика: учебник – Саранск: Морд. гос. ун-т, 2009.
Золотова С.И. Практикум по Access. / С.И. Золотова – М.: Финансы и статистика, 2003.
Дж. Ульман, Дж. Видом. Введение в системы баз данных. – М.: Лори.- 2000.