чтобы определить какой движитель эффективнее было построено
Кубок Оливье 2021. Второй тур
Дата: 2020-12-25
Вопрос 13: На странице одной благотворительной организации можно увидеть лозунг «Смотреть вперёд, а не вверх», предлагающий отказаться от НИХ в пользу пожертвований. Назовите ИХ одним словом.
Комментарий: Немецкая благотворительная организация «Хлеб для всего мира» призывает тратить деньги на помощь бедным, а не на фейерверки.
Вопрос 14: Чемпионат мира по дартсу традиционно проходит в конце года. В 2020 году чемпионат проходил без зрителей, что негативно сказалось на атмосфере состязаний. Чтобы повеселить коллег, Питер Райт выступал в НЁМ. Назовите ЕГО двумя словами, которые начинаются на парные согласные.
Ответ: Костюм Гринча
Зачёт: Точный ответ в любой капитализации
Комментарий: Украл ли он при этом Рождество — неизвестно, но настроение окружающим поднял.
Вопрос 15: Событие, произошедшее в 1755 году, послужило толчком к зарождению современной ЕЁ. Назовите ЕЁ словом греческого происхождения.
Зачёт: Точный ответ
Комментарий: После разрушительного землетрясения в Лиссабоне ученые стали всерьез пытаться предсказывать будущие землетрясения. Слово «толчок» в вопросе должно было послужить подсказкой.
Вопрос 16: Блиц. Три вопроса по двадцать секунд обсуждения каждый.
1. Несмотря на то, что на картине Гогена изображена птица и написано произносимое ею слово, Гоген не считал картину иллюстрацией к ЕГО произведению. Назовите ЕГО фамилию.
2. По мнению Муми-тролля, зима наступает от того, что десять тысяч ИХ усаживаются на землю. Назовите ИХ.
3. ОНИ объясняли северное сияние отражением света, который излучают косяки сельди. Назовите ИХ.
Ответ: 1. По, 2. Морры, 3. Поморы
Зачёт: 1. Точный ответ., 2. В любом числе в узнаваемом написании. 3. В любом числе и падеже
Комментарий: 1. Картина Гогена «Nevermore» [Невермор] по мнению самого Гогена, не связана напрямую с одноименным стихотворением Эдгара По, хотя на ней есть и ворон, и слово «Nevermore» [невермор]. 2. Морра — персонаж сказок о Муми-троллях, вокруг которой замерзает земля и гибнут растения. Неудивительно, что Муми-тролль считает зиму приходом множества Морр. 3. Чешуя сельди дает яркое, радужное отражение, вот живущие на севере поморы и придумали эту легенду.
Источник(и):
1. https://ru.wikipedia.org/wiki/Больше_никогда_(картина)
2. https://ru.wikipedia.org/wiki/Морра
3. http://www.lovozero.net/more/severnoe-siyanie
Вопрос 17: Чтобы определить, какой движитель эффективнее, было построено два одинаковых парохода — один с колесами, другой с винтом. После этого пароходы устроили соревнование по… Ответьте двумя словами: какому виду спорта?
Ответ: Перетягивание каната
Зачёт: Точный ответ в любом падеже
Комментарий: Пароходы соединили канатом и пустили полным ходом. В результате пароход с винтом победил, перетянув своего колесного соперника со скоростью два узла.
Вопрос 18: Местные выборы в Намибии выиграл темнокожий политик по имени Адольф Гитлер. Несмотря на имя, в юности этот политик ненавидел педиатра и активно боролся с ним. Какое слово в предыдущем предложении мы заменили другим?
Зачёт: Точный ответ в любой капитализации
Комментарий: Темнокожий политик Адольф Гитлер Уунона, несмотря на имя, начал свою карьеру как активный борец против апартеида. Намибия долгие годы управлялась ЮАР, поэтому политика апартеида действовала и там. Имя он получил от родителей, не слишком разбиравшихся в вопросе. Слова «педиатра» и «апартеид» — анаграммы.
Вопрос 19: В Мексике наладили выпуск органической кожи Desserto [дезерто], которую изготавливают из ИКСОВ. Назовите ИКСЫ.
Зачёт: по слову «кактус»
Комментарий: Кожу с пустынным названием изготавливают из кактусов рода опунция. По сообщениям изготовителей, она ничем не хуже кожи животного происхождения, мягкая, эластичная и даже дышит. Символично, что кожу из кактусов изготавливают именно в Мексике.
Вопрос 20: ИКС в этом вопросе заменяет другое слово. Живущий в эмиграции иранский художник Ре́за Деракша́ни в своих произведениях сплетает с родиной разорванные нити. Одна из его работ написана с применением традиционного материала и называется «ИКС за ИКСОМ». Кто также писал ИКСАМИ?
Комментарий: В произведениях Резы Деракшани часто можно видеть мотивы его родины. Так, в его работе под названием «Узелок за узелком» художник использовал настоящий персидский ковёр. Узелковые ковры ручной работы — один из символов Ирана. Узелковым письмом пользовались инки и кечуа.
Источник(и):
1. «Русский музей представляет: Реза Деракшани / Альманах. Вып. 481». Спб: Palace Editions, 2016. Стр. 8.
2. http://www.rezaderakshani.com/veriaty/2016/5/12/lrpqgf781rtlvza1dkah6gq9fojcbp
3. https://www.koverstore.ru/article/tehnologiya-izgotovleniya-kovra
4. https://ru.wikipedia.org/wiki/Узелковое_письмо
Вопрос 21: Никарагуанский ОН возник спонтанно, когда в Никарагуа была организована специальная школа, где детей пытались учить испанскому ЕМУ. Назовите ЕГО двумя словами.
Ответ: жестовый язык
Зачёт: язык жестов, язык глухонемых, язык немых, язык глухих
Комментарий: До открытия специальной школы для глухонемых детей в Никарагуа не было собственного жестового языка, глухонемые жили изолированно и использовали лишь небольшое количество простых жестов. И только в специальной школе глухонемые ученики, оказавшиеся вместе, сами выработали язык, который не понимали учителя, знавшие лишь испанский жестовый язык и не слишком успешно пытавшиеся научить ему детей.
Вопрос 22: Чайные плантации Катаку́ра в провинции Цуру́га, можно увидеть, как ни парадоксально, на сорок четвертом из НИХ. Назовите ИХ четырьмя словами.
Ответ: Тридцать шесть видов Фудзи
Зачёт: 36 видов Фудзи
Комментарий: Серия гравюр «36 видов Фудзи» состоит, как ни парадоксально, из 46 гравюр. Серия так хорошо продавалась, что Хокусай написал 10 дополнительных гравюр, но название серии менять не стали.
Вопрос 23: ОНИ на склонах Монмартра появились еще в Средние века. Сейчас остался лишь один ОН на северном склоне, поэтому получающаяся продукция в первую очередь является сувенирной. Назовите ЕГО.
Зачёт: Точный ответ
Комментарий: Виноградники Монмартра известны с Х века. В наше время из винограда, выращенного на Монмартре, производят около 500 литров вина в год. Вино с северного склона получается не самым вкусным, и хотя его вполне можно пить, при цене поллитровой бутылки в 30 евро вино скорее подходит в качестве необычного сувенира. Купить вино можно, например, в парижском Музее Монмартра.
Вопрос 24: 86-летняя английская актриса Джу́ди Денч сказала, что когда-нибудь, возможно, и вернется в театр, но только в качестве НЕГО. В название какого романа 1909 года входит ОН?
Ответ: Призрак Оперы
Зачёт: Точный ответ в любой капитализации
Комментарий: Призрак отца Гамлета — вполне английская театральная роль. 86-летняя актриса таким образом, видимо, еще и пошутила о своем возрасте.
Какой ракетный двигатель самый лучший?
Ракетные двигатели — одна из вершин технического прогресса. Работающие на пределе материалы, сотни атмосфер, тысячи градусов и сотни тонн тяги — это не может не восхищать. Но разных двигателей много, какие же из них самые лучшие? Чьи инженеры поднимутся на пьедестал почета? Пришло, наконец, время со всей прямотой ответить на этот вопрос.
К сожалению, по внешнему виду двигателя нельзя сказать, насколько он замечательный. Приходится закапываться в скучные цифры характеристик каждого двигателя. Но их много, какую выбрать?
Мощнее
Ну, наверное, чем мощнее двигатель, тем он лучше? Больше ракета, больше грузоподъемность, быстрее начинает двигаться освоение космоса, разве не так? Но если мы посмотрим на лидера в этой области, нас ждет некоторое разочарование. Самая большая тяга из всех двигателей, 1400 тонн, у бокового ускорителя Спейс Шаттла.
Несмотря на всю мощь, твердотопливные ускорители сложно назвать символом технического прогресса, потому что конструктивно они являются всего лишь стальным (или композитным, но это неважно) цилиндром с топливом. Во-вторых, эти ускорители вымерли вместе с шаттлами в 2011 году, что подрывает впечатление их успешности. Да, те, кто следят за новостями о новой американской сверхтяжелой ракете SLS скажут мне, что для нее разрабатываются новые твердотопливные ускорители, тяга которых составит уже 1600 тонн, но, во-первых, полетит эта ракета еще не скоро, не раньше конца 2018 года. А во-вторых, концепция «возьмем больше сегментов с топливом, чтобы тяга была еще больше» является экстенсивным путем развития, при желании, можно поставить еще больше сегментов и получить еще большую тягу, предел тут пока не достигнут, и незаметно, чтобы этот путь вел к техническому совершенству.
Второе место по тяге держит отечественный жидкостной двигатель РД-171М — 793 тонны.
Четыре камеры сгорания — это один двигатель. И человек для масштаба
Казалось бы — вот он, наш герой. Но, если это лучший двигатель, где его успех? Ладно, ракета «Энергия» погибла под обломками развалившегося Советского Союза, а «Зенит» прикончила политика отношений России и Украины. Но почему США покупают у нас не этот замечательный двигатель, а вдвое меньший РД-180? Почему РД-180, начинавшийся как «половинка» РД-170, сейчас выдает больше, чем половину тяги РД-170 — целых 416 тонн? Странно. Непонятно.
Третье и четвертое места по тяге занимают двигатели с ракет, которые больше не летают. Твердотопливному UA1207 (714 тонн), стоявшему на Титане IV, и звезде лунной программы двигателю F-1 (679 тонн) почему-то не помогли дожить до сегодняшнего дня выдающиеся показатели по мощности. Может быть, какой-нибудь другой параметр важнее?
Эффективнее
Какой показатель определяет эффективность двигателя? Если ракетный двигатель сжигает топливо, чтобы разгонять ракету, то, чем эффективнее он это делает, тем меньше топлива нам нужно потратить для того, чтобы долететь до орбиты/Луны/Марса/Альфы Центавра. В баллистике для оценки такой эффективности есть специальный параметр — удельный импульс.
Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива
Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP
Это не пожар в микроволновке, а настоящий ракетный двигатель. Правда, микроволновка ему все-таки приходится очень отдаленным родственником.
Двигатель HiPEP разрабатывался для закрытого проекта зонда для исследования лун Юпитера, и работы по нему были остановлены в 2005 году. На испытаниях прототип двигателя, как говорит официальный отчет NASA, развил удельный импульс 9620 секунд, потребляя 40 кВт энергии.
Второе и третье места занимают еще не летавшие электрореактивные двигатели VASIMR (5000 секунд) и NEXT (4100 секунд), показавшие свои характеристики на испытательных стендах. А летавшие в космос двигатели (например, серия отечественных двигателей СПД от ОКБ «Факел») имеют показатели до 3000 секунд.
Двигатели серии СПД. Кто сказал «классные колонки с подсветкой»?
Почему же эти двигатели еще не вытеснили все остальные? Ответ прост, если мы посмотрим на другие их параметры. Тяга электрореактивных двигателей измеряется, увы, в граммах, а в атмосфере они вообще не могут работать. Поэтому собрать на таких двигателях сверхэффективную ракету-носитель не получится. А в космосе они требуют киловатты энергии, что не всякие спутники могут себе позволить. Поэтому электрореактивные двигатели используются, в основном, только на межпланетных станциях и геостационарных коммуникационных спутниках.
Ну, хорошо, скажет читатель, отбросим электрореактивные двигатели. Кто будет рекордсменом по удельному импульсу среди химических двигателей?
С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10. И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 — успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет. В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.
Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше
460, физика запрещает). Были проекты атомных двигателей (раз, два), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней. Есть ли еще показатели, по которым можно оценить двигатель?
Напряженней
Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем больше давление давление в камере сгорания, тем больше тяга и, главным образом в атмосфере, удельный импульс. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе. И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР — в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами. Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм).
Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления
Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя — РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двумястами тремя атмосферами.
Надежней
Большая фотография по ссылке
Верно и обратное — двигатель, который не отличается выдающимися значениями тяги или удельного импульса, но надежен, будет популярен. Чем длиннее история использования двигателя, тем больше статистика, и тем больше багов в нем успели отловить на уже случившихся авариях. Двигатели РД-107/108, стоящие на «Союзе», ведут свою родословную от тех самых двигателей, которые запускали первый спутник и Гагарина, и, несмотря на модернизации, имеют достаточно невысокие на сегодняшний день параметры. Но высочайшая надежность во многом окупает это.
Доступней
Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще. Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США — в 1980-х. Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто.
Двигатель Merlin-1D. Выхлоп из газогенератора как на «Атласах» шестьдесят лет назад, зато доступно
Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX — тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) — это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150. На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали. Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет. Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать. И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.
Вывод
Самый лучший ракетный двигатель — это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько(удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас.
Скучно? Зато ближе всего к истине.
И, в заключение, небольшой хит-парад двигателей, которые лично я считаю лучшими:
Семейство РД-170/180/190. Если вы из России или можете купить российские двигатели и вам нужны мощные двигатели на первую ступень, то отличным вариантом будет семейство РД-170/180/190. Эффективные, с высокими характеристиками и отличной статистикой надежности, эти двигатели находятся на острие технологического прогресса.
Be-3 и RocketMotorTwo. Двигатели частных компаний, занимающихся суборбитальным туризмом, будут в космосе всего несколько минут, но это не мешает восхищаться красотой использованных технических решений. Водородный двигатель BE-3, перезапускаемый и дросселируемый в широком диапазоне, с тягой до 50 тонн и оригинальной схемой с открытым фазовым переходом, разработанный сравнительно небольшой командой — это круто. Что же касается RocketMotorTwo, то при всем скептицизме по отношению к Брэнсону и SpaceShipTwo, я не могу не восхищаться красотой и простотой схемы гибридного двигателя с твердым топливом и газообразным окислителем.
F-1 и J-2 В 1960-х это были самые мощные двигатели в своих классах. Да и нельзя не любить двигатели, подарившие нам такую красоту:
РД-107/108. Парадоксально? Невысокие параметры? Всего 90 тонн тяги? 60 атмосфер в камере? Привод турбонасоса от перекиси водорода, что устарело лет на 70? Это все неважно, если двигатель имеет высочайшую надежность, а по стоимости приближается к «большому глупому носителю». Да, конечно, когда-нибудь и его время пройдет, но эти двигатели будут жить еще лет десять минимум, и, похоже, поставят рекорд по долголетию. Не получится найти более успешный двигатель с более славной историей.
Использованные источники
Новые типы движителей для плавсредствУченический научно-исследовательский проект
Даётся в сокращённом и отредактированном виде. – Ред.
Сейчас уже общепризнано, что проектная деятельность не только становится для ученика образовательной, даёт навыки научно-исследовательской работы, но и, что самое главное, позволяет на практике освоить метод научного познания действительности. Это особенно важно на фоне современной «свободы слова» с обилием сомнительных «новых» теорий и псевдооценок явлений природы. Проектная деятельность позволяет увидеть, как результаты собственной исследовательской работы могут быть использованы для решения вполне конкретных общественно-значимых практических задач. Ниже приведена одна из двух ученических опытно-конструкторских работ, являющихся продолжением исследовательских проектов «Почему летают птицы» и «Подводный кайт», содержание которых кратко изложено в статье «Полёты в воздушной и водной средах» («Физика» № 29/2004). Проекты были выполнены при технической помощи ОАО «Мика-Антикор» и представлялись на конкурсе «Ярмарка идей на Юго-Западе» в апреле 2005 г., где заняли первое место.
Руководитель проектов Галина Павловна Устюгина, учитель физики. ustyugina@voxnet.ru
Научный консультант Юрий Евгеньевич Устюгин, к.ф.-м.н.
Наши предыдущие исследования [1, 2] привели к мысли, что возвратно-поступательное воздействие знакопеременной силы на движитель определённой формы может привести к появлению силы тяги, поперечной к направлению воздействия, и высокоэкономичной работе движителя. Эти предположения мы проверяли методом физического моделирования: изготавливали соответствующие движители и приводы для них, создавали модели плавательных средств с двигательно-движительной системой и исследовали их работу. Выяснилось, что предлагаемые нами новые движители по экономическим показателям превосходят такой широко используемый для движения транспортных средств в воздухе, на воде и под водой, как винт.
1. ПРОБЛЕМА ЭКОНОМИЧНОСТИ
Живая природа нередко ставит в тупик исследователей, преподнося различные «технические» загадки. Одна из них, над которой ломает головы не одно поколение учёных, – как многие морские животные, рыбы и дельфины умудряются двигаться в плотной воде со скоростями, порой недоступными даже для полёта в воздухе? Меч-рыба, например, развивает скорость до 130 км/ч; тунец – до 90 км/ч. Расчёты показывают: чтобы преодолеть сопротивление воды и набрать такую скорость, рыбе необходимо развить мощность автомобильного двигателя – порядка 100 л.с. Украинские учёные изготовили модель меч-рыбы, подвесили её на быстроходный катер и определили сопротивление среды и требуемую для движения мощность. В пересчёте на скорость и размеры рыбы модель испытывала сопротивление 4000 Н (408 кгс) и требовала для своего движения мощности 100 л.с. (73,6 кВт)!
Рекордсмен подводного плавания – меч-рыба
Энергию живые существа получают за счёт окислительных процессов. Но рыбы – существа холоднокровные, их температура ненамного выше температуры воды, в которой кислород, кстати, растворён в очень небольшом количестве. Такие мощности для них недостижимы! Остаётся предположить только одно: рыбы каким-то образом «умеют» очень сильно понижать сопротивление воды. Гипотезу, объясняющую этот феномен, выдвинул профессор Института теоретической и прикладной механики СО РАН В.И.Меркулов (г. Новосибирск) [3].
Традиционные движители для плавсредств
Существует четыре основных вида судовых движителей: водомётный, гребное колёсо, гребной винт и крыльчатый.
Водомётный движитель. Это, по существу, просто поршневой или центробежный насос, который засасывает воду через отверстие в носу или днище корабля и выбрасывает её через сопла в кормовой его части. Создаваемый упор (сила тяги) определяется разностью количеств движения (импульсов) струи воды на выходе и на входе движителя. Водомётный движитель был впервые предложен и запатентован Тугудом и Хейсом в Англии в 1661 г. Как и другие, предложенные разными изобретателями более поздние варианты, конструкция обладала низким КПД. Водомётный движитель применяется, когда низкий КПД компенсируется преимуществами в других отношениях, например, для плавания по мелководным или засорённым рекам.
Гребное колесо. Это широкое колесо с лопастями по периферии. В более совершенных конструкциях лопасти могут поворачиваться относительно колеса так, чтобы создавать нужную пропульсивную силу при минимальных потерях. Ось вращения колеса выше уровня воды, так что погружена лишь его небольшая часть, и в каждый данный момент времени только несколько лопастей создают упор. КПД гребного колеса, вообще говоря, возрастает с увеличением его диаметра, так что колёса диаметром 6 м и более – не редкость. Частота вращения большого колеса получается небольшой. Когда-то она соответствовала возможностям паровых машин, однако со временем машины совершенствовались, и малые обороты стали серьёзным препятствием – гребные колёса уступили место гребным винтам.
Гребной винт. Винт использовали ещё древние египтяне для подачи воды из Нила. Есть свидетельства, что в средневековом Китае для движения судов использовали винт с ручным приводом. В Европе винт в качестве судового движителя впервые предложил Р.Гук (1680 г.). (Далее обсуждаются параметры винта, не использованные в приводимой работе. – Ред.)
Размеры современных гребных винтов варьируются от 0,2 до 6 м и более. Мощность, развиваемая винтом, может составлять доли киловатта, а может превышать 40 МВт, соответственно частота вращения лежит в диапазоне от 2000 об/мин для малых винтов до 60 об/мин для больших. КПД хороших винтов может достигать 80%, однако на практике довольно трудно оптимизировать все основные параметры, поэтому на малых судах КПД обычно около 45%. Максимальный КПД достигается при относительном скольжении (отношение скорости движения судна к скорости перемещения движитекля.) 10–30% и быстро уменьшается до нуля при работе винта как в режиме швартовки, так и при больших оборотах [4].
Крыльчатый движитель. Это диск, по периферии которого перпендикулярно плоскости диска размещены 4–8 лопастей-лопаток. Диск устанавливается заподлицо с днищем корабля, а в поток опускаются только лопасти. Помимо того что диск с лопастями вращается относительно своей оси, сами лопасти могут поворачиваться относительно своих продольных осей. В результате вода ускоряется в требуемом направлении и создаётся упор для движения судна. Такой тип движителя имеет преимущество перед гребным винтом и гребным колесом, поскольку упор может создаваться в любом желаемом направлении: вперёд, назад и даже вбок без изменения направления вращения двигателя. Для управления судном с крыльчатым движителем не требуется привычных рулей. Крыльчатые движители весьма эффективны в некоторых специальных случаях [5].
Крыльчатый движитель – пропеллер Воиса–Шнайдера.– с четырьмя лопастями. Лопасти вращаются с ротором относительно центральной т. О в одном направлении с постоянной скоростью и связаны жёсткими штангами в т. N, которая не вращается вместе с ротором. Если эта точка смещена относительно т. О, то угол атаки каждой лопасти по отношению к касательной к окружности изменяется по мере движения точки захвата лопасти по окружности. Управление судном очень легко осуществляется смещением т. N: чем больше она удалена от оси вращения O, тем больше сила тяги пропеллера (members.surfeu.at/fprossegger/english/vsp-function)
Движитель типа «рыбий хвост»
Природа постоянно демонстрирует человеку один из самых лучших и эффективных движителей – хвост рыбы, совершающий характерные визуально наблюдаемые колебательные движения. Соответствующим движителям придают форму, близкую к форме хвоста рыбы, и принуждают его совершать колебательные движения. Одним из примеров является разработка Г.А.Семёнова [6, 7]. Как он пишет, «. многим известен „парадокс Грея”: дельфин, развивая скорость 10 м/с, должен иметь мощность, в 10 раз большую им располагаемой. Из этого, на мой взгляд, следуют такие выводы: 1) современные плавсредства при мощностях, которыми они располагают, должны передвигаться со скоростями, хотя бы в несколько раз большими; 2) при неизменном запасе топлива плавсредство с таким же движителем, как у дельфина, обеспечит в 10 раз большую дальность плавания». В разработанной им модели катамарана с плавниковым движителем (приводится рисунок. – Ред.) главной особенностью является клин, позволяющий повысить КПД. Однако, на наш взгляд, движитель Семёнова, как и другие аналогичные, является гребковым движителем, принципиально отличающимся от природного «рыбьего хвоста» и потому не способным достичь его КПД.
2. ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРИВОД
Известные варианты. Для экспериментальных исследований необходимо собрать или изготовить электромеханический привод, с помощью которого можно передавать энергию двигателя движителю. Из общеизвестных вариантов приводов (в оригинаде приводится рисунок. – Ред.) [8] мы выбрали для своих моделей зубчатую и ременную передачи.
Наш вариант привода. Общий вид электромеханического привода дан на фото. В качестве двигателя мы использовали электродвигатель (угловая скорость 75 об/с) от радиоуправляемой игрушки на четырёх батареях постоянного (4 1,5 В) напряжения типа АА. Два редуктора понижали угловую скорость двигателя до 5–7 об/с: один, шестерёнчатый, от той же игрушки, другой, ременной, изготовлен нами. В качестве ремня использовалось резиновое кольцо. На один конец вала был насажен шкив, на другой – кривошип.
Общий вид модели плавсредства, несущей всю двигательно-движительную систему, показан на фото. Система допускает быструю замену движителя, закрепляемого на штоке и совершающего в процессе работы возвратно-поступательное движение. Шток – силовой элемент, оказывающий знакопеременное силовое воздействие на движитель.
Общий вид модели плавсредства – надводного судна
3. НАШИ ИССЛЕДОВАНИЯ
Гипотеза. При выполнении проектов [1, 2] мы выявили правило U = /l = 0,29, выполняющееся для всех маховых перьев птиц (исследовались перья городского голубя, вороны, орла и чайки). Более того, оказалось, что выбор точки захвата подводного кайта в соответствии с правилом U = 0,29 приводит буквально к вылету модели из-под воды. В результате родилась гипотеза: если взять гибкую упругую пластину и придать ей знакопеременное перемещение в направлении, перпендикулярном плоскости пластины, то следует ожидать появления силы тяги в направлении, перпендикулярном направлению этого перемещения. Такая колеблющаяся пластина может использоваться как судовой движитель.
Рис. 4. Сечение махового пера, О
Движители. На фото представлены движители различной формы, которые испытывались нами в лабораторных условиях, будучи установленными на модели описанного выше радиоуправляемого надводного судна. Сначали испытывались движители прямоугольной формы, выполненные из полимерной плёнки толщиной 0,4 мм (в) и 0,15 мм (д). Положение точки захвата движителя (круглое отверстие – белая точка на фото) определялось в соответствии с правилом U = 0,29. Выяснилось, что прямоугольная пластина деформируется сложным образом (рис. А): при движении точки захвата вверх передние углы пластины, помеченные двумя верхними звёздочками, отгибаются вниз, также как и задняя часть пластины, причём наиболее сильно отклоняется её средняя точка (правая звёздочка).
Рис. А. Форма прямоугольного движителя в свободном состоянии (вверху) и под действием внешней силы F (внизу). Звёздочками помечены области максимального смещения
Рис. Б. К определению внутреннего контура движителя
Пунктирные контуры – внешний (красный) и внутренний (синий) – ограничивают часть движителя, играющую роль ствола птичьего пера. Поэтому сначала, чтобы оконтурить движитель, обрезали пластинку из пластика толщиной 0,4 мм по внешнему (красному) контуру. Затем строили внутренний контур (рис. Б): из каждой точки, например C, внешнего контура восстанавливали перпендикуляр до пересечения с линией заднего обреза (точка D) и делили отрезок CD на две части в соответствии с правилом U = 0,29. После этого по возможности ближе к внутреннему контуру просверливали точку захвата. На образованный таким образом «ствол» наклеивали тонкую (0,015 мм) полимерную плёнку (варианты а, б, г, ж на фото). Так получились движители типа а, б на фото. Движители типа г, ж использовались для выяснения влияния разрезов и силовых элементов («рёбер жёсткости»). Движитель е – простейшая имитация рыбьего хвоста.
Эксперимент. Измерения и наблюдения выполнялись в аквариуме и ванне. Сначала в качестве двигателя использовали скрученный резиновый шнур. Однако оказалось, что в этом случае можно было только наблюдать движение модели, измерить же какие-либо параметры было трудно из-за непостоянства потенциальной энергии раскручивающегося резинового шнура. Поэтому в дальнейшем мы собрали модель на основе электродвигателя постоянного тока. Для измерений силы использовали обычный школьный динамометр с полной шкалой 5 Н и ценой деления 0,1 Н. Временные интервалы измеряли таймером (в сотовом телефоне – цена деления 0,001 с, что давало повод поговорить об ошибках измерений). Для определения скорости модели измеряли проходимый ею с установившейся скоростью путь 20 см (между метками на стенках аквариума). Время и силу тяги измеряли каждый раз трижды три различных оператора. в дальнейших расчётах использовались результаты, усреднённые по этим девяти измерениям.
Fср – сила, действующая на шток. Определяли динамометром в процессе работы движителя в воде.
– угловая скорость вала вращения, на который насажен кривошипно-шатунный механизм, задающий возвратно-поступательное движение штока: определяли как число n возвратно-поступательных движений штока за 1 с, умноженноe на 2
радиан.
Fтяги – сила тяги, возникающая в процессе работы движителя: определяли с помощью динамометра, закреплённого одним концом в неподвижном штативе, а другим – за корпус модели. Динамометр располагали параллельно поверхности воды на высоте около 1 см.
– скорость установившегося движения модели. Определяли по формуле
=
s/
t, где
s – заранее заданный интервал пути,
t – измеренный интервал времени, за который модель его проходила.
u – средняя скорость движения штока. За один полный цикл возвратно-поступательного движения шток (и точка захвата движителя) проходит путь, равный 4r, где r – плечо кривошипа, а за 1 с он проходит путь d = 4r . n, поэтому численно u = 0,032n (в нашем случае r = 0,008 м).
= Апол/Азатр, где Апол – полезная работа движителя, Азатр – затраченная им работа. Поскольку мощность – это работа в единицу времени, то Nпол = Апол/
t, Nзатр = Азатр/
t, где
t – интервал времени, в течение которого выполнялась работа (в нашем случае
t = 1 с). Полезную мощность определим как Nпол = Fтяги
, а затраченную как Nзатр= Fср d.
Относительная поступь =
/u, где
– скорость установившегося движения модели, u – скорость прохождения движителем пути d; для винта u = r
.
В таблице приведены результаты измерений и вычислений для предложенного нами движителя, а также (для сравнения) для гребного винта диаметром 0,05 м [10].
Замечание. Известно, что КПД винта летательного аппарата достигает максимального значения (80%) при = 0,25 [10]. При
, близких к нулю, летательный аппарат приближается к состоянию покоя, а винт находится в режиме холостого хода, т.е.
= 0. При больших
летательный аппарат движется с такой скоростью, что встречный поток начинает раскручивать* винт, т.е. наступает режим, схожий с режимом холостого хода винта, в этом случае также
= 0. Т.е. полёт аппарата с поступью винта, близкой к 1, вообще исключён.
Зависимость КПД от поступи винта летательного аппарата
Из таблицы видно, что КПД нашего движителя (76%) выше КПД гребного винта (45%). Существенно и различие в относительной поступи: 1,1 против 0,855, т.е. больше приблизительно на 30%. Модель с винтом движется в 7,5 раз быстрее, но при этом и энергетические потери у неё значительно больше: в 7,34/0,0264 = 282 раза! Таким образом, «провал» в среду, характерный для гребковых движителей, приводит и к существенным экономическим потерям.
Полученные нами результаты позволяют ожидать существенный экономический выигрыш при эксплуатации предлагаемых безопорных вихревых средств возбуждения силы тяги перед гребковыми средствами. Применение спаренных, действующих в противофазе движителей должно исключить вибрацию корпуса плавсредства и позволить преобразовать часть энергии, прежде расходовавшуюся на эту вибрацию, в кинетическую энергию поступательного движения плавсредства.
* Когда у вертолёта отказывает двигатель, он падает. При этом пропеллер раскручивается встречным потоком воздуха. Так же и у самолёта: если самолёт будет лететь очень быстро, то уже не вращающийся винт будет толкать самолёт, а наоборот, самолёт при своём движении будет раскручивать винт, что приводит к торможению самолёта и даже к отрицательному КПД винта. – Г.У.
Заключение
1. Предложен новый способ создания силы тяги в текучих средах, а также устройство – движитель для плавательных аппаратов, – в основу разработки которых положены результаты, полученные в проекте [1].
2. Экспериментально показано, как наличие знакопеременной силы, действующей на движитель в поперечном к его поверхности направлении, порождает силу тяги у плавсредства с таким движителем.
3. Выполнена опытно-конструкторская разработка радиоуправляемой модели плавательного средства с движителями различной конфигурации, но общего принципа действия, удовлетворяющего правилу
U = 0,29, найденного для маховых перьев птиц.
4. Опытно-конструкторская разработка – радиоуправляемая модель с новым типом движителя – испытана в лабораторных условиях.
5. Показано, что КПД нового движителя равен 76% при относительной поступи движителя
1, где
= u/
, u – скорость поступательного движения плавсредства,
– средняя скорость перемещения движителя под воздействием знакопеременной силы. (При таком значении
винт вообще уже не работает как движитель, становясь ветряком-пропеллером, как у ветряной мельницы.)
1. Ручкин И., Алексеев К., Белых А. (школа № 1273). Почему летают птицы: Исследовательская работа: Руководитель Г.П.Устюгина. – «Ярмарка идей Юзао», москва, 2004.
2. Краснопевцев Д., Шапкин А.(школа № 1273). Подводный кайт: Проектная работа: Руководитель Г.П.Устюгина. – «Ярмарка идей Юзао», москва, 2004.
6. Семёнов Г.А. Патент РФ № 2090441 «Движитель для судов и аппаратов надводного и подводного плавания».
7. Семёнов Г.А. Затраты энергии на транспорте могут быть снижены в 10 раз. www.eprussia.ru/epr/info/sklad/036/new_tech_1.3.htm.
8. Мазейкин Е.М., Шмелёв В.Е. Конструирование и моделирование технических устройств. www.tula.net/tgpu/resources/construct/index.htm.
10. Прандтль Л. Гидроаэродинамика: R@C Dynamics. – М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002.
Дмитрий Краснопевцев
Алексей Шапкин
Галина Павловна Устюгина – выпускница физического факультета Ташкентского государственного университета 1971 г. по специализации «Радиационная физика», учитель физики высшей квалификационной категории, педагогический стаж 33 года, почётный работник общего образования Российской Федерации. В целях поиска путей совершенствования системы образования принимала активное участие в работе творческой лаборатории народного учителя СССР Б.И.Вершинина в г. Томске в 1993 г. Дальнейший поиск привёл к системе развивающего обучения Д.Б.Эльконина–В.В.Давыдова. Основные принципы этой системы сейчас положены в основу уроков педагога. Галина Павловна участвовала в разработке методик преподавания физики. По приглашению руководства Горно-Алтайского республиканского института повышения квалификации прочитала курс лекций по теме «Моделирование учебно-воспитательного процесса при обучении физике». На республиканском семинаре «Инновации в процессе преподавания физики» представила авторские разработки методики развивающего обучения физике. В 1998 г. стала призёром республиканского конкурса «Учитель года». В 2002–2004 гг. проводила окружные семинары для учителей физики ЮЗАО г. Москвы, в 2003 г. в составе делегации работников просвещения г. Москвы провела один из лучших уроков физики по программе «Мастер-класс» в г. Киеве. Участвовала в работе второго (2003 г.), третьего (2004 г.) и четвёртого (2005 г.) Московских марафонов учебных предметов, организуемых МДО, МИОО и ИД «Первое сентября». В настоящее время является руководителем и организатором проектно-исследовательских работ в школе. Её ученики Сергей Панюшкин и Владимир Апальнов стали призёрами в номинации «Проектно-исследовательские работы» на конкурсе «Ярмарка идей на Юго-Западе-2003» и лауреатами 7-й научной конференции молодых исследователей «Шаг в будущее. Москва» (2004 г.), которая проходила в МГТУ им. Н.Э.Баумана, выступив с работой «Моделирование торнадо-процесса». Проектные работы учащихся 9-го класса «Почему летают птицы» (Иван Ручкин и Андрей Белых) и «Подводный кайт» (Дмитрий Краснопевцев и Алексей Шапкин) были удостоены дипломов 1-й степени в конкурсе «Ярмарка идей на Юго-Западе-2004». Ученики Галины Павловны регулярно занимают призовые места на олимпиадах по физике. Имеет публикации в газете «Физика», журнале «Квант», патенты на изобретения. Незаменимым помощником Галины Павловны является её муж Юрий Евгеньевич Устюгин, с которым она вместе училась в ТашГУ. Юрий Евгеньевич – к.ф.-м.н., автор ряда публикаций по физике множественного образования частиц при высоких энергиях, ядерной геофизике, антикоррозийным покрытиям нефтесодержащего оборудования и сооружений (журналы «Ядерная физика», «Доклады АН СССР», «Известия АН УзССР», «Трубопроводный транспорт нефти», сборники статей по геологии и ядерной геофизике), имеет авторские свидетельства и патенты на изобретения. В 1996 г. разработал оригинальную технологию производства высокоантикоррозийного пигмента «спекулярит», освоил его промышленное производство и внедрил на предприятиях ОАО «Центрсибнефтепровод». В 1998–2000 гг. в должности гендиректора восстанавливал ГУП «Акташское горно-металлургическое предприятие», в 2000 г. был приглашён холдингом «Содружество» в Москву для работы в качестве замгендиректора по финансам и экономике в ОАО «Угли Кузбасса», в 2001 г. переведён на должность гендиректора Орско-Халиловского комбината «НОСТА». В последние годы занят вопросами гидро- и аэродинамики и подготовкой будущих физиков. Семья педагогов вырастила двух дочерей, а теперь растит двух внучек и внука, уделяя им всё свободное время, которого, к сожалению, так не хватает на всех. Хобби – горный туризм.