Итератор в питоне что это

Итерируемый объект, итератор и генератор

Привет, уважаемые читатели Хабрахабра. В этой статье попробуем разобраться что такое итерируемый объект, итератор и генератор. Рассмотрим как они реализованы и используются. Примеры написан на Python, но итераторы и генераторы, на мой взгляд, фундаментальные понятия, которые были актуальны 20 лет назад и еще более актуальны сейчас, при этом за это время фактически не изменились.

Итератор в питоне что это. Смотреть фото Итератор в питоне что это. Смотреть картинку Итератор в питоне что это. Картинка про Итератор в питоне что это. Фото Итератор в питоне что это

Итераторы

Для начала вспомним, что из себя представляет паттерн «Итератор(Iterator)».
Назначение:

Существуют два вида итераторов, внешний и внутренний.
Внешний итератор — это классический (pull-based) итератор, когда процессом обхода явно управляет клиент путем вызова метода Next.
Внутренний итератор — это push-based-итератор, которому передается callback функция, и он сам уведомляет клиента о получении следующего элемента.

Классическая диаграмма паттерна “Итератор”, как она описана в небезызвестной книги «банды четырех»:
Итератор в питоне что это. Смотреть фото Итератор в питоне что это. Смотреть картинку Итератор в питоне что это. Картинка про Итератор в питоне что это. Фото Итератор в питоне что это

Aggregate — составной объект, по которому может перемещаться итератор;
Iterator — определяет интерфейс итератора;
ConcreteAggregate — конкретная реализация агрегата;
ConcreteIterator — конкретная реализация итератора для определенного агрегата;
Client — использует объект Aggregate и итератор для его обхода.

Пробуем реализовать на Python классический итератор

Конкретная реализация итератора для списка:

Конкретная реализация агрегата:

Теперь мы можем создать объект коллекции и обойти все ее элементы с помощью итератора:

А так как мы реализовали метод first, который сбрасывает итератор в начальное состояние, то можно воспользоваться этим же итератором еще раз:

Реализации могут быть разные, но основная идея в том, что итератор может обходить различные структуры, вектора, деревья, хеш-таблицы и много другое, при этом имея снаружи одинаковый интерфейс.

Протокол итерирования в Python

В книге «банды четырех» о реализации итератора написано:

Минимальный интерфейс класса Iterator состоит из операций First, Next, IsDone и CurrentItem. Но если очень хочется, то этот интерфейс можно упростить, объединив операции Next, IsDone и CurrentItem в одну, которая будет переходить к следующему объекту и возвращать его. Если обход завершен, то эта операция вернет специальное значения(например, 0), обозначающее конец итерации.

Именно так и реализовано в Python, но вместо специального значения, о конце итерации говорит StopIteration. Проще просить прощения, чем разрешения.

Сначала важно определиться с терминами.

Рассмотрим итерируемый объект (Iterable). В стандартной библиотеке он объявлен как абстрактный класс collections.abc.Iterable:

У него есть абстрактный метод __iter__ который должен вернуть объект итератора. И метод __subclasshook__ который проверяет наличие у класса метод __iter__. Таким образом, получается, что итерируемый объект это любой объект который реализует метод __iter__

Но есть один момент, это функция iter(). Именно эту функцией использует например цикл for для получения итератора. Функция iter() в первую очередь для получения итератора из объекта, вызывает его метод __iter__. Если метод не реализован, то она проверяет наличие метода __getitem__ и если он реализован, то на его основе создается итератор. __getitem__ должен принимать индекс с нуля. Если не реализован ни один из этих методов, тогда будет вызвано исключение TypeError.

Итого, итерируемый объект — это любой объект, от которого встроенная функция iter() может получить итератор. Последовательности(abc.Sequence) всегда итерируемые, поскольку они реализуют метод __getitem__

Теперь посмотрим, что с итераторами в Python. Они представлены абстрактным классом collections.abc.Iterator:

__next__ Возвращает следующий доступный элемент и вызывает исключение StopIteration, когда элементов не осталось.
__iter__ Возвращает self. Это позволяет использовать итератор там, где ожидается итерируемых объект, например for.
__subclasshook__ Проверяет наличие у класса метода __iter__ и __next__

Итого, итератор в python — это любой объект, реализующий метод __next__ без аргументов, который должен вернуть следующий элемент или ошибку StopIteration. Также он реализует метод __iter__ и поэтому сам является итерируемым объектом.

Таким образом можно реализовать итерируемый объект на основе списка и его итератор:

Функция next() вызывает метод __next__. Ей можно передать второй аргумент который она будет возвращать по окончанию итерации вместо ошибки StopIteration.

Прежде чем переходить к генераторам, рассмотрим еще одну возможность встроенной функции iter(). Ее можно вызывать с двумя аргументами, что позволит создать из вызываемого объекта(функция или класс с реализованным методом __call__) итератор. Первый аргумент должен быть вызываемым объектом, а второй — неким ограничителем. Вызываемый объект вызывается на каждой итерации и итерирование завершается, когда возбуждается исключение StopIteration или возвращается значения ограничителя.

Например, из функции которая произвольно возвращает 1-6, можно сделать итератор, который будет возвращать значения пока не «выпадет» 6:

Небольшой класс ProgrammingLanguages, у которого есть кортеж c языками программирования, конструктор принимает начальное значения индекса по названию языка и функция __call__ которая перебирает кортеж.

Можем перебрать все языки начиная с C# и до последнего:

Генераторы

С точки зрения реализации, генератор в Python — это языковая конструкция, которую можно реализовать двумя способами: как функция с ключевым словом yield или как генераторное выражение. В результате вызова функции или вычисления выражения, получаем объект-генератор типа types.GeneratorType.

В объекте-генераторе определены методы __next__ и __iter__, то есть реализован протокол итератора, с этой точки зрения, в Python любой генератор является итератором.
Концептуально, итератор — это механизм поэлементного обхода данных, а генератор позволяет отложено создавать результат при итерации. Генератор может создавать результат на основе какого то алгоритма или брать элементы из источника данных(коллекция, файлы, сетевое подключения и пр) и изменять их.

Ярким пример являются функции range и enumerate:

range генерирует ограниченную арифметическую прогрессию целых чисел, не используя никакой источник данных.
enumerate генерирует двухэлементные кортежи с индексом и одним элементом из итерируемого объекта.

Yield

Для начало напишем простой генератор не используя объект-генератор. Это генератор чисел Фибоначчи:

Но используя ключевое слово yield можно сильно упростить реализацию:

Любая функция в Python, в теле которой встречается ключевое слово yield, называется генераторной функцией — при вызове она возвращает объект-генератор.
Объект-генератор реализует интерфейс итератора, соответственно с этим объектом можно работать, как с любым другим итерируемым объектом.

Рассмотрим работу yield:

Создается стейт-машина в которой при каждом вызове __next__ меняется состояния и в зависимости от него вызывается тот или иной кусок кода. Если в функции yield в цикле, то соответственно состояние стейт-машины зацикливается пока не будет выполнено условие.

Свой вариант range:

Генераторное выражение (generator expression)

Если кратко, то синтаксически более короткий способ создать генератор, не определяя и не вызывая функцию. А так как это выражение, то у него есть и ряд ограничений. В основном удобно использовать для генерации коллекций, их несложных преобразований и применений на них условий.

В языках программирования есть такие понятия, как ленивые/отложенные вычисления(lazy evaluation) и жадные вычисления(eager/greedy evaluation). Генераторы можно считать отложенным вычислением, в этом смысле списковое включение(list comprehension) очень похожи на генераторное выражение, но являются разными подходами.

Первый вариант работает схожим с нашей функцией cool_range образом и может генерировать без проблем любой диапазон. А вот второй вариант создаст сразу целый список, со всеми вытекающими от сюда проблемами.

Yield from

Для обхода ограниченно вложенных структур, традиционный подход использовать вложенные циклы. Тот же подход можно использовать когда генераторная функция должна отдавать значения, порождаемые другим генератором.

Функция похожая на itertools.chain:

Но вложенные циклы можно убрать, добавив конструкцию yield from:

Основная польза yield from в создании прямого канала между внутренним генератором и клиентом внешнего генератора. Но это уже больше тема про сопрограммы(coroutines), которые заслуживают отдельной статьи. Там же можно обсудить методы генератора: close(), throw() и send().

И в заключении еще один пример. Функция принимающая итерируемый объект, с любым уровнем вложенности другими итерируемыми объектами, и формирующая плоскую последовательность:

Источник

Итераторы в Python

Концепция итераторов никоим образом не специфична для Python. В самом общем виде это объект, который используется для перебора в цикле последовательности элементов. Однако разные языки программирования реализуют данную концепцию по-разному или не реализуют вовсе. В Python каждый цикл for использует итератор, в отличие от многих других языков. В данной статье мы поговорим про итераторы в Python. Кроме того, мы рассмотрим итерируемые объекты (англ. iterables) и т.н. nextables.

Итерируемые объекты

Обратите внимание, что итерируемый объект не обязательно является итератором. Поскольку на самом деле сам по себе он не выполняет итерацию. У вас может быть отдельный объект-итератор, который возвращается из итерируемого класса, а не класс, обрабатывающий свою собственную итерацию. Но об этом позже.

Итераторы

Перейдем к собственно итераторам, рабочей лошадке итерации (особенно в Python). Итераторы – это уровень абстракции, который инкапсулирует знания о том, как брать элементы из некоторой последовательности. Мы намеренно объясняем это в общем виде, поскольку «последовательность» может быть чем угодно, от списков и файлов до потоков данных из базы данных или удаленного сервиса. В итераторах замечательно то, что код, использующий итератор, даже не должен знать, какой источник используется. Вместо этого он может сосредоточиться только на одном, а именно: «Что мне делать с каждым элементом?».

Марк Лутц «Изучаем Python»

Скачивайте книгу у нас в телеграм

Итерация без итератора

Чтобы лучше понять преимущества итераторов, давайте кратко рассмотрим итерацию без итераторов. Примером итерации без итератора является классический цикл for в стиле C. Этот стиль существует не только в C, но и, например, в C++, go и JavaScript.

Пример того, как это выглядит в JavaScript:

Здесь мы видим, что данный тип цикла for должен работать как с извлечением, так и с действиями для каждого элемента.

Все циклы for в Python используют итераторы

Сначала давайте посмотрим на Python-эквивалент предыдущего примера, наиболее близкий к нему синтаксически:

Если вы внимательно посмотрите на пример на JavaScript, вы увидите, что мы сообщаем циклу, когда нужно завершить ( i ), а также — как инкременировать ( i++ ). Итак, чтобы приблизить код Python к такому уровню абстракции, нам нужно написать что-то вроде этого:

Протокол итератора в Python

Отметим, nextable – это не часто используемый термин, потому что его можно запросто превратить в итератор. Как видите, метод __iter__ для итераторов легко реализовать. Фактически, в определении итератора явно указано, что должен делать метод:

Теперь давайте превратим это в итератор, сделав «некстабельным». Метод __next__ должен возвращать следующий объект в последовательности. Он также должен вызывать StopIteration при достижении конца последовательности (т.н. «исчерпание итератора»). То есть, в нашем случае — когда мы дошли до конца алфавита.

Хорошо, теперь давайте посмотрим на код нашего класса, а затем мы объясним, как он работает:

Теперь давайте попробуем сделать это через цикл for :

Мы обрезали вывод, потому что алфавит сейчас не так интересен, не правда ли? Этот итератор, как и следовало ожидать, совершенно бесполезен. Мы могли бы просто перебирать ascii_lowercase напрямую. Но, надеемся, на этом примере вы лучше разобрались в итераторах.

Nextables

Для этого удалим метод __iter__ из предыдущего примера, в результате чего получим следующее:

Python отделяет итератор от последовательности

Мы начали экспериментировать со встроенными последовательностями и сделали небольшое забавное открытие. В Python последовательности сами по себе не являются итераторами. Скорее у каждой есть соответствующий класс-итератор, отвечающий за итерацию. Давайте посмотрим на диапазон в качестве примера:

Просто для проверки используем next с range_iterator :

Создание отдельных Iterable и Nextable

Вооружившись этими новыми знаниями об отделении итерируемого объекта от итератора, мы придумали новую идею:

Итерация действительно проста:

Это просто оболочка для нашей следующей таблицы из примера nextable. Затем пишем цикл:

Однако такая установка хрупкая. Возвращаясь к нашему правильно реализованному итератору, этот код будет работать:

А код с нашей комбинацией iterable + nextable — нет:

Заключение

Давайте подведем итоги! Во-первых, теперь вы знаете, что все циклы for в Python используют итераторы! Кроме того, как мы увидели, итераторы в Python позволяют нам отделить код, выполняющий итерацию, от кода, работающего с каждым элементом. Мы также надеемся, что вы узнали немного больше о том, как работают итераторы в Python и что такое протокол итератора.

На этом пока все, и мы надеемся, вам понравился более глубокий взгляд на протокол итераторов в Python!

Источник

Python. Урок 15. Итераторы и генераторы

Генераторы и итераторы представляют собой инструменты, которые, как правило, используются для поточной обработки данных. В уроке рассмотрим концепцию итераторов в Python, научимся создавать свои итераторы и разберемся как работать с генераторами.

Итераторы в языке Python

Во многих современных языках программирования используют такие сущности как итераторы. Основное их назначение – это упрощение навигации по элементам объекта, который, как правило, представляет собой некоторую коллекцию (список, словарь и т.п.). Язык Python, в этом случае, не исключение и в нем тоже есть поддержка итераторов. Итератор представляет собой объект перечислитель, который для данного объекта выдает следующий элемент, либо бросает исключение, если элементов больше нет.

Приведем несколько примеров, которые помогут лучше понять эту концепцию. Для начала выведем элементы произвольного списка на экран.

Как уже было сказано, объекты, элементы которых можно перебирать в цикле for, содержат в себе объект итератор, для того, чтобы его получить необходимо использовать функцию iter(), а для извлечения следующего элемента из итератора – функцию next().

Как видно из приведенного выше примера вызов функции next(itr) каждый раз возвращает следующий элемент из списка, а когда эти элементы заканчиваются, генерируется исключение StopIteration.

Создание собственных итераторов

Если нужно обойти элементы внутри объекта вашего собственного класса, необходимо построить свой итератор. Создадим класс, объект которого будет итератором, выдающим определенное количество единиц, которое пользователь задает при создании объекта. Такой класс будет содержать конструктор, принимающий на вход количество единиц и метод __next__(), без него экземпляры данного класса не будут итераторами.

В нашем примере при четвертом вызове функции next() будет выброшено исключение StopIteration. Если мы хотим, чтобы с данным объектом можно было работать в цикле for, то в класс SimpleIterator нужно добавить метод __iter__(), который возвращает итератор, в данном случае этот метод должен возвращать self.

Генераторы

Генераторы позволяют значительно упростить работу по конструированию итераторов. В предыдущих примерах, для построения итератора и работы с ним, мы создавали отдельный класс. Генератор – это функция, которая будучи вызванной в функции next() возвращает следующий объект согласно алгоритму ее работы. Вместо ключевого слова return в генераторе используется yield. Проще всего работу генератор посмотреть на примере. Напишем функцию, которая генерирует необходимое нам количество единиц.

Данная функция будет работать точно также, как класс SimpleIterator из предыдущего примера.

Ключевым моментом для понимания работы генераторов является то, при вызове yield функция не прекращает свою работу, а “замораживается” до очередной итерации, запускаемой функцией next(). Если вы в своем генераторе, где-то используете ключевое слово return, то дойдя до этого места будет выброшено исключение StopIteration, а если после ключевого слова return поместить какую-либо информацию, то она будет добавлена к описанию StopIteration.

P.S.

Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.
Итератор в питоне что это. Смотреть фото Итератор в питоне что это. Смотреть картинку Итератор в питоне что это. Картинка про Итератор в питоне что это. Фото Итератор в питоне что это

Источник

Что из себя представляет итератор в Python. Создаем свой собственный итератор

Итератор в питоне что это. Смотреть фото Итератор в питоне что это. Смотреть картинку Итератор в питоне что это. Картинка про Итератор в питоне что это. Фото Итератор в питоне что это

1. Итератор языка Python

В этой статье, посвященной итераторам и их применению в языке Python, мы также рассмотрим создание своих собственных методов __iter__() и __next__(), соберем свой собственный итератор, рассмотрим всю пользу итераторов и закрепим наши знания на примерах.

Итак, начинаем наш туториал по итераторам в Python.

2. Кто такие эти ваши итераторы?

Итератор в языке программирования Python — это объект, который вы можете перебирать. То есть он возвращает по одному объекту за раз. Итератор Python, неявно реализован в таких конструкциях, как циклы for, comprehension’ах и генераторах Python. Функции iter() и next() как раз и образуют протокол итератора.

Если мы можем получить итератор от объекта в Python, значит он итерабельный. Например, списки Python, кортежи и строки.

3. А как создать итератор?

Чтобы собрать итератор python3, мы используем функции iter() и next(). Давайте начнем с iter(), чтобы создать итератор.

Сначала мы создаем список, который содержит все четные числа от 2 до 10.

Затем мы применяем функцию iter() к этому списку Python, чтобы создать объект итератора. Мы храним его в переменной evenIterator.

Помните, итератор можно получить не только для списка, кортежи и даже множества отлично подойдут.

Теперь, чтобы получить доступ к первому элементу, мы применяем функцию next() к объекту итератора Python.

Мы достигли конца списка. Когда мы вызываем его еще раз, мы провоцируем ошибку StopIteration (исключение). Интерпретатор сразу же выбрасывает его.

С методом iter() разобрались, посмотрим на __next__()

Итак, вы можете пройтись по итератору в Python, используя метод __next __() вместо next(). (Ну, мало ли…)

Мы можем увидеть этот метод с помощью функции dir().

4. Цикл for для итераторов Python

Вы также можете использовать цикл for в Python для итерации по какому-нибудь итерируемому объекту, например, по списку Python или по кортежу.

Но как это на самом деле реализовано? Давайте взглянем.

Это была простая версия. Вот как на самом деле реализован вышеприведенный цикл for.

5. Наконец создаем свой собственный итератор

Теперь вы знаете, как использовать итератор с функциями iter() и next(). Но мы не остановимся на этом. Теперь мы начнем с самого нуля.

Мы реализуем следующий класс для создания итератора в Python для квадратов чисел от 1 до максимального указанного.

Здесь __init __() принимает значение max. Затем мы создаем объект «a» класса PowTwo с аргументом 4. Затем мы создаем итератор, используя iter(). Далее мы используем функцию next(), чтобы получать элементы один за другим.

В качестве альтернативы вы можете использовать методы __iter __() и __next __() для этого объекта.

Функция iter() вызывает метод __iter __() внутри себя.

6. Бесконечный итератор

В Python действительно возможно создать итератор, который никогда не исчерпывается. Функция iter() может принимать другой аргумент, называемый «страж». Этот страж является точкой выхода и работает следующим образом: как только значение, возвращаемое итератором равно значению стража, итератор заканчивается.

Мы знаем, что функция int() без параметра внутри возвращает 0.

Теперь мы вызываем iter() с двумя аргументами — int и 1.

Этот итератор Python никогда не исчерпает себя, он бесконечен. Это потому, что 0 никогда не равен 1. Серьезно, никогда.

Чтобы создать бесконечный итератор Python с использованием класса, рассмотрим следующий пример.

Здесь Python перебирает четные числа, начинающиеся с 2 и никогда не заканчивающиеся. Таким образом, вы должны быть осторожны и обеспечить завершающее условие (точку выхода).

7. Преимущества итераторов языка Python

Итератор в python экономит ресурсы. Чтобы получить все элементы, в памяти одновременно хранится только один элемент. В отличие от итератора, список должен хранить все значения одновременно.

8. Делаем выводы

В этой статье мы узнали об итераторах Python. Разве они не веселые и супер удобные? Итератор использует всего две функции — iter() и next(). Тем не менее, мы можем сделать наш собственный итератор в Python при помощи класса. Наконец, мы рассмотрели также бесконечные итераторы.

Кроме того, если у вас есть какие-либо вопросы/сомнения, не стесняйтесь задавать их в поле для комментариев.

Источник

Знакомимся с продвинутыми возможностями Python: итераторы, генераторы, itertools

Итератор в питоне что это. Смотреть фото Итератор в питоне что это. Смотреть картинку Итератор в питоне что это. Картинка про Итератор в питоне что это. Фото Итератор в питоне что это

В Python есть много возможностей, которые привлекают математиков. Вот некоторые из них: встроенная поддержка кортежей, списков и множеств, которые записываются практически так же, как это делается в математике, list comprehensions или генераторы списков, синтаксис которых похож на генераторы множеств, и другое.

Посмотрите пример использования. В последней строке сделана попытка превратить итератор в список. Это приводит к бесконечному циклу.

И пример использования:

Рассмотрим ещё один интересный пример: генерацию последовательности Q Хофштадтера. В приведённом ниже коде итератор используется для генерации последовательности с помощью вложенных повторений.

Вот пример использования:

Генераторы

Посмотрите, как это применяется на практике.

Одно из возможных решений — получение одновременно списка и результата.

Наконец, с помощью генераторов удобно реализовывать дискретные динамические системы. Пример ниже показывает, как с помощью генераторов реализуется отображение тент.

Пример использования генератора:

Рекурсивные генераторы

Генераторные выражения

Как отмечалось выше, генераторные выражения можно передавать в функции, которые нуждаются в итераторе. Например, сумму первых десяти совершенных квадратов можно получить так:

Ниже будут другие примеры генераторных выражений.

Модуль itertools

В модуле itertools есть набор итераторов, которые упрощают работу с перестановками, комбинациями, декартовыми произведениями и другими комбинаторными структурами. Документация доступна по ссылке.

Обратите внимание, представленные ниже алгоритмы не являются оптимальными для практического использования. Примеры используются, чтобы показать возможности перестановок и комбинаций. На практике лучше избегать перечисления перестановок и комбинаций, если вы не имеете веской причины для этого, так как размер перечислений растёт по экспоненте.

Второй пример касается интересной математической задачи. С помощью генераторных выражений, itertools.combinations и itertools.permutations вычислим количество инверсий перестановки, а затем суммируем количество инверсий во всех перестановках в списке.

В статье рассмотрели особенности использования итераторов, генераторов и модуля itertools в Python. Вопросы и пожелания пишите в комментариях.

Адаптированный перевод статьи A Study of Python’s More Advanced Features Part I: Iterators, Generators, itertools by Sahand Saba. Мнение адмнистрации «Хекслета» может не совпадать с мнением автора оригинальной публикации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *