Иттербиевые лазеры что это

Как устроен волоконный лазер

Волоконный лазерный аппарат представляет собой мощный станок для создания одномодового излучения с максимально высокими рабочими и качественными характеристиками. Оптоволоконные устройства для обработки материалов занимают порядка одной четвертой части всего рынка производственного оборудования.

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Диаметр волоконного излучателя имеет микро значения, поэтому луч с абсолютной точностью вырезает острые углы и прочие сложные формы даже в листе металла повышенной твердости и большой толщины

Луч, сформированный в оптоволоконной среде, предназначен преимущественно для работы с металлическими поверхностями, поэтому в числе сфер применения данного типа оборудования выступают такие, как:

Кроме металлов волоконный станок хорошо зарекомендовал себя в работе с камнем, стеклом и некоторыми видами пластика, поэтому его используют и в тех отраслях, которые массово используют работе эти материалы (рекламная индустрия, некоторые виды строительных работ и т. д.).

Достоинства оптоволоконных станков

Приоритетность в использовании твердотельного оборудования (именно к этой категории и относятся волоконные лазеры) перед любыми другими станками объясняется большим количеством экономических и качественных преимуществ, главными из которых являются следующие:

Устройство волоконного лазера

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Протяженность оптического кабеля может составлять от пары метров до 40, а то и 100 метра, поэтому для оптимизации пространства его скручивают кольцами и укладывают на поверхности оборудования

Волоконный принцип преобразования светового излучения в лазерное является одним из самых совершенных. Эффективность процесса получения полезной энергии составляет порядка 80-90%, при этом в ходе генерации лазера практически полностью исключены искажения волнового фронта и потери мощности луча на всем оптическом маршруте.

Система лазерообразования волоконных устройств состоит из двух основных частей: ламп накачки (полупроводниковых диодов) и оптического кабеля. Внутри последнего расположено светопроводящее волокно с сердцевиной из прозрачного кварца, легированного ионами редкоземельных элементов (в большинстве станков, используемых в промышленности, это иттербий). На концах центрального стержня чаще всего делают брэгговскую (дифракционную) решетку, представляющую собой штрихи, нанесенные определенным образом. Участки с насечками имеют измененную отражательную способность и выступают в качестве резонаторов, отражая свет, распространяющийся вдоль волокна, и поддерживая требуемую длину волны. Благодаря им луч сохраняет свою монохромность и прочие качественные характеристики.

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Оптическое волокно в разрезе

Диодные лампы включаются при запуске станка и начинают подпитывать световод энергией, одновременно накачивая волокно на всей его протяженности и приводя сердцевину в рабочее состояние. Это активирует иттербиевое покрытие, которое начинает генерировать ионы, причем, благодаря брэгговской решетке, выступающей в роли отражающих зеркал, часть светового потока постоянно присутствует внутри волокна, порождая создание все новых атомов. Вторая половина световой энергии вырывается наружу стабильным и мощным лазерным лучом.

Сторона оптического кабеля, предназначенная для выхода лазерного потока, соединяется с подвижной режущей головкой, размещенной над поверхностью материала. Фокусирующая линза внутри головки автоматически или по командам управляющей программы сводит луч в световое пятно нужного диаметра и направляет его в зону реза.

Детальный видеообзор на профессиональный лазерный станок Wattsan 6040. Внутренее устройство и технические характеристики оборудования.

Побывали в гостях на производстве предприятия «АЛЬТАИР», которое успешно занимается производством деревянных игрушек и сувенирной продукции.

Видео с производства компании Пластфактория — наш уже постоянный клиент, который занимается POS-материалами и работает с крупными косметическими брендами.

Источник

Волоконный лазер, как устроен, сравнение с СО2 лазером, преимущества и недостатки

Волоконный лазер — универсальный инструмент, который активно используется в различных направлениях промышленности. Его КПД составляет около 70%, что позволяет сократить временные затраты на выполнение работ любой сложности.

Устройство состоит из двух основных частей: ламп накачки и оптического кабеля, внутри которого расположено светопроводящее волокно и сердцевиной из прозрачного кварца.

Это позволяет обеспечить максимальную точность лазерного луча и возможность направить его на конкретный участок обрабатываемой поверхности. На концах центрального стержня также расположена дифракционная решетка в виде нанесенных особым образом штрихов.

Именно насечки отвечают за быстрое отражение луча от поверхности, что позволяет поддерживать необходимую длину волны в течение всей работы, а также сохранить монохромность луча.

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Для чего используется волоконный лазер

Волоконный лазер можно назвать универсальным инструментом, который используется на производствах различных назначений. Он с точностью вырезает даже острые углы, а также подходит для обработки поверхностей с требованиями высокой точности в работе.

Основное назначение волоконного лазера – работа с металлами различной толщины и уровня плотности.

Отличается широтой сфер применения и используется при:

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Волоконный лазер отлично справляется с обработкой не только металлов, но и камня (искусственного и натурального), стекла, некоторых видов пластика.

Отличия волоконного и CO2 лазеров

Основной волоконного лазера является оптически активное волокно, лазера CO2 – смесь газов, ключевым среди которых является углекислый.

Основное различие двух лазеров заключается в длине волны – для газового показатель составляет 10,6 кмк, тогда как для волоконного всего 1,06 кмк, что позволяет добиться высокой точности при обработке и сохранить поверхность вокруг обрабатываемого участка нетронутой, не нагретой.

Сокращенная длина волны волоконного лазера также обеспечивает увеличенную скорость обработки металлов и камня, а также получение идеально гладкой поверхности материала.

Главный недостаток волоконного лазера заключается в сложностях при обработке НЕметаллов, что с легкостью обеспечивается при помощи лазера CO2.

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Главные отличия волоконного и газового лазеров можно обозначить следующим образом:

Волоконный лазер – оборудование нового поколения, которое применяется практически во всех сферах, где требуется комплексная обработка металлов, камня или стекла (в некоторых случаях – пластика).

Простота установки и легкость самой конструкции позволяют использовать его в том числе в небольших промышленных центрах, ювелирных мастерских (при изготовлении украшений, нанесении гравировки на поверхность).

Преимущества использования волоконного лазера

Волоконный лазер – удобный, универсальный и производительный лазер, который в промышленности просто незаменим.

Он используется на основе оптически активного или кварцевого волокна, генерация излучения происходит непосредственно в волокне и уже оттуда поступает к месту обработки материала.

Волоконный лазер имеет широкий список преимуществ перед газовыми и твердотельными аппаратами, среди которых:

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Луч волоконного лазера действует направленно и позволяет обработать поверхность небольшого размера – материал вокруг при этом не нагревается. Излучение быстро поглощается различными металлами, поэтому использование лазера такого плана безопасно для окружающих.

Волоконный лазер – достаточно компактное оборудование, подходящее для решения широкого спектра задач.

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Где заказать волоконный лазер

Компактность волоконного лазера позволяет разместить его практически в любом помещении и сократить затраты на доставку, установку. На качество обработки металлов, стекла и камня в первую очередь влияет качество поставляемого оборудования, поэтому приобретать его следует только в проверенном месте.

Заказать волоконынй лазерный станок для резки и гравировки металла Вы можете в нашей компании – мы работаем на рынке не первый год и точно знаем, каким должно быть оптоволоконное оборудование высокого качества.

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Какие преимущества сотрудничества мы предлагаем:

Если вы не имеете опыта, как правильно настроить и запустить волоконный лазер, наши специалисты помогут вам с решением всех спорных вопросов. Предлагаем консультацию в том числе при выборе оборудования и оформлении заказа.

Источник

Сравнение СО2 и волоконного лазера

В этой статье мы рассмотрим два вида лазерного оборудования: на твердотельном волоконном лазере и газовом СО2.

Уже из названия становится ясно первое отличие этих двух источников лазерного излучения. В основе первого лежит волокно, активная среда которого выполнена из сверхчистого кварца легированного редкоземельным элементом эрбием.

Накачка активной среды в таком лазере осуществляется мощными широкополосными светодиодными модулями. В результате квантового усиления на выходе волокна образуется мощное когерентное излучение с длиной волны 1.06 мкм.

Рабочим же телом в СО2 лазерах является смесь газов, основным из которых является углекислый газ. Накачкой в таких лазерах может служит тлеющий разряд воздействующий на газовую смесь, генерируя лазерное излучение на выходе с длиной волны 10.6 мкм.

Помимо исходной активной среды, как можно заметить, эти лазеры отличают и длины волн сгенерированного излучения. Именно разная длина волны определяет воздействие на разные материалы этих двух видов лазеров. Также уместно заметить и еще одно отличие — диаметр пятна полученного на выходе лазера излучения. В волоконном лазере этот диаметр в десять раз меньше, чем в СО2, что позволяет получать более тонкий рез, и сконцентрировать большую энергию на меньшей площади. В результате скорость резки волоконным лазером тонколистового металла до 4-6 мм в два-три раза выше, чем при резке СО2 лазером. При этом качество реза, характеризующееся одним из таких параметров, как шероховатость остается примерно на одном уровне. С увеличением же толщины металла свыше 8мм превосходство в качестве кромки переходит к СО2 лазеру.

На глубину реза, и поглощающую способность излучения материалом оказывает большое влияние и угол падения лазерного излучения. Так, на углах падения от 0 до 86 градусов, излучение волоконного лазера поглощается материалом гораздо лучше, чем излучение СО2 лазера. Однако, на участке от 86 до 90 градусов ситуация кардинально меняется, что объясняет лучшую режущую способность больших толщин металла газовым лазером, где на глубине стенки реза близки к 90 градусам.

Возвращаясь к длине волны этих двух типов лазеров, нужно отметить поглотительную способность разных материалов в зависимости от длины волны. Так, например, оба вида лазера хорошо справляются с резкой стали, но когда вопрос встает о обработке латуни, серебра, или меди, то являясь идеальным отражающим материалом для волны в 10.6 мкм, СО2 лазер остается в стороне, отдавая пальму первенства волоконному лазеру с длиной волны 1.06 мкм. С другой стороны, такие материалы, как ткань натуральная или синтетическая, древесина, бумага, стекло, фанера являются отличными поглотителями длинноволнового инфракрасного излучения СО2 лазера, и соответственно отлично подходят для обработки таким видом лазера.

Производя сравнения двух видов лазера, волоконного и газового СО2, стоит отметить их конструктивное отличие. Не вдаваясь глубоко в детали, можно лишь сказать, что волоконный лазер, генерируя лазерное излучение непосредственно в волокне, которое является гибким, позволяет выводить полученное излучение напрямую к лазерной фокусирующей головке, без применения сложной оптической системы зеркал, которая, к тому же, требует частой юстировки и технического обслуживания. Система СО2 лазера являясь более технически сложной, имеет и большие габариты самой установки, и,что немаловажно, имеет значительно большее энергопотребление по сравнению с волоконным эрбиевым лазером. Говоря про энергопотребление уместно отметить и тот факт, что КПД этих разных видов лазеров имеют разные значения. Так, для волоконного лазера, КПД достигает 25%, в то время, как у газового СО2 лазера эта цифра находится в пределах 8-10%.

Подводя небольшой итог следует выделить некоторые моменты в отличии оборудования в основе которых лежат разные типы лазерного излучения:

Волоконный лазерный станок:

Газовый СО2 лазерный станок:

Источник

Волоконный лазер

Иттербиевые лазеры что это. Смотреть фото Иттербиевые лазеры что это. Смотреть картинку Иттербиевые лазеры что это. Картинка про Иттербиевые лазеры что это. Фото Иттербиевые лазеры что это

Волоконный лазер — лазер, активная среда и, возможно, резонатор которого являются элементами оптического волокна. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным. Волоконные лазеры применяются в промышленности для резки металлов и маркировки продукции, сварке и микрообработке металлов, линиях волоконно-оптической связи. Их основными преимуществами являются высокое оптическое качество излучения, небольшие габариты и возможность встраивания в волоконные линии.

Существует большое разнообразие конструкций волоконных лазеров, обусловленное спецификой их применения. Для их изготовления широко применяются как резонаторы типа Фабри — Перо, так и кольцевые резонаторы. Специальными методиками можно создать однополяризационные лазеры, лазеры сверхкоротких импульсов и другие. Во всех волоконных лазерах применяются специальные типы оптических волокон, в которые встроены один или несколько волноводов для осуществления оптической накачки.

История

Впервые передачу лазерного излучения по оптическому волокну продемонстрировали Элиес Снитцер (англ. Elias Snitzer) и Уилл Хикс (англ. Will Hicks) в 1961 году. Основным недостатком их устройства было сильное затухание излучения при прохождении волокна. Однако через несколько лет Снитцером был создан первый лазер, в качестве рабочей среды которого использовалось оптическое волокно, легированное неодимом. В 1966 году Чарльз Као и Джордж Хокхам создали оптическое волокно, затухание в котором составляло около 20 дБ/км, в то время как иные существовавшие на то время волокна характеризовались затуханием более 1000 дБ/км. Информационная ёмкость волокна Као соответствовала двумстам телеканалам. Внутренний диаметр составлял около 4 микрон, а диаметр всего волновода около 400 микрон. Прогресс в производстве оптических волокон привлёк широкое внимание к ним как средству передачи сигналов на большие расстояния.

Стремительное развитие волоконных лазеров началось с конца 1980-х. Основные направления исследований были связаны с экспериментированием в использовании различных примесей в оптических волокнах для достижения заданных параметров генерируемого излучения. В частности, особый интерес представляла генерация сверхкоротких импульсов в инфракрасной области спектра. C 1993 года в сенсорике и сфере связи стали широко использоваться промышленные образцы эрбиевых лазеров. В 1990-е годы мощность генерации эрбиевых лазеров превысила порог в 1 Вт, был продемонстрирован эрбиевый четырёхваттный лазер. После 2000 года привлекли к себе внимание иттербиевые лазеры, показавшие значительный потенциал для увеличения мощности.

В течение 1993—1994 годов небольшой коллектив сотрудников российской компании НТО «ИРЭ-Полюс» разработал первые прототипы волоконных усилителей света с диодной накачкой, по мощности превышающие зарубежные аналоги. Позже основатель этой компании В. П. Гапонцев создал международную корпорацию IPG Photonics, которая в настоящее время контролирует 80 % мирового рынка волоконных лазеров большой мощности. Её основные производственные площадки расположены в США, Германии и России.

Принципы работы

Общая схема

Волоконный лазер состоит из модуля накачки (как правило, широкополосные светодиоды или лазерные диоды), световода, в котором происходит генерация, и резонатора. Световод содержит активное вещество (легированное оптическое волокно — сердцевина без оболочки, в отличие от обычных оптических волноводов) и волноводы накачки. Конструкция резонатора обычно определяется техническим заданием, но можно выделить наиболее распространенные классы: резонаторы типа Фабри — Перо и кольцевые резонаторы. В промышленных установках для повышения выходной мощности иногда объединяют несколько лазеров в одной установке.

Активное волокно

Сверхчистый плавленый кварц, который является основным материалом оптических волокон, обладает высокой прозрачностью (оптические потери — несколько процентов на километре длины). Специальные примеси, вводимые в кварц легированием, превращают его в активную среду. Исходя из требований на частоту излучения (инфракрасный диапазон для телекоммуникаций) и малую пороговую мощность накачки, как правило, легирование выполняют редкоземельными элементами группы лантаноидов. Одним из распространённых типов волокон является эрбиевое, используемое в лазерных и усилительных системах, рабочий диапазон которых лежит в интервале длин волн 1530—1565 нм. Вследствие различной вероятности переходов на основной уровень с подуровней метастабильного уровня, эффективность генерации или усиления отличается для различных длин волн в рабочем диапазоне. Степень легирования редкоземельными ионами обычно зависит от длины изготовляемого активного волокна. В пределах до нескольких десятков метров она может составлять от десятков до тысяч ppm, а в случае километровых длин — 1 ppm и менее.

Накачка

Существуют различные конструкции накачки оптических волноводов, из которых наиболее употребительными являются чисто волоконные конструкции. Одним из вариантов является размещение активного волокна внутри нескольких оболочек, из которых внешняя является защитной (так называемое волокно с двойным покрытием).

Схема накачки лазера, основанного на волокне с двойным покрытием

Первая оболочка изготовляется из чистого кварца диаметром в несколько сотен микрометров, а вторая — из полимерного материала, показатель преломления которого подбирается существенно меньшим, чем у кварца. Таким образом, первая и вторая оболочки создают многомодовый волновод с большим поперечным сечением и числовой апертурой, в который запускается излучение накачки. Эффективное возбуждение ионов редкоземельных элементов достигается подбором диаметров активной сердцевины и волновода накачки. По такой технологии можно получить выходную мощность порядка 100 Вт.

Большие мощности накачки достигаются с помощью технологии GTWave. В одну защитную оболочку встраивается несколько сердцевин волноводов, одна из которых является активной средой, а другие — волноводами накачки. Накачка осуществляется благодаря эванесцентному полю, проникающему в активную среду через их стенки. Особенностью технологии являются возможность ввода излучения накачки через оба торца каждого из волноводов накачки и отсутствие необходимости в WDM-ответвителях.

Допустимую мощность накачки ограничивает предельная мощность излучения на единицу площади, которую выдерживает вещество без разрушения. Для чистого кремния она составляет 1010 Вт/см2 (22 Дж/см2 для импульса длительностью 1 нс на длине волны 1 мкм). Таким образом, верхний предел мощности накачки для оптического волокна с диаметром сердцевины 8 мкм составляет около 5 кВт.

Резонаторы типа Фабри — Перо

Резонаторы, основанные на интерферометре Фабри — Перо, являются одними из самых распространённых. Различия между ними заключаются в способе создания зеркал резонатора.

Резонаторы с использованием диэлектрических зеркал

В первых волоконных лазерах для создания резонатора Фабри — Перо применялись диэлектрические зеркала благодаря возможности создавать их практически прозрачными на длине волны накачки 0,82 мкм, сохраняя при этом высокий коэффициент отражения на длине волны генерации 1,088 мкм (таковы были параметры лазеров, где применялось волокно, легированное ионами Nd3+). Вначале волокно размещалось между зеркалами, однако такую конструкцию было сложно юстировать. Частичное решение проблемы состояло в нанесении диэлектрических зеркал непосредственно на торцы волокна, что, однако, повышало риск их повреждения мощным сфокусированным излучением накачки и ужесточало требования к обработке торцов оптического волокна. Проблема защиты зеркал иногда решалась применением WDM-ответвителей.

Резонатор с использованием волоконных брэгговских решёток

Резонатор внутри оптического волокна создается парами внутриволоконных брэгговских решёток — участков оптического волновода, в которых создается структура с модулированным показателем преломления. Участки с изменённым показателем преломления (штрихи) располагаются перпендикулярно оси волновода. Отражение от такой структуры происходит на длине волны

где n eff >> — эффективный показатель преломления основной моды, Λ B > — период решётки. Характер отражения (полное или частичное) будет зависеть от её параметров. Ширина спектра отражения при большом количестве штрихов становится пропорциональной коэффициенту связи κ , связанному с коэффициентом отражения соотношением

где L — длина решётки. На практике созданная внутри волокна брэгговская решётка имеет несколько иные параметры, так как само её создание меняет эффективный показатель преломления в месте нахождения решётки и, таким образом, саму её резонансную длину волны. Для внутриволоконных решёток являются опасными высокие температуры. Хотя в целом температура разрушения решётки существенно зависит от метода её создания и материала волокна, чаще всего критические температуры лежат в диапазоне 300—600 °C. Селективность по частоте брэгговских решёток позволяет получить лазер, работающий на одной продольной моде с узкой частотной полосой генерации. В волоконных ВКР-лазерах иногда создают более одной пары брэгговских решёток на разные длины волн для достижения большего порядка рассеяния (каждый следующий порядок рассеяния изменяет длину волны фотонов, что позволяет достичь требуемой длины волны).

Кольцевые резонаторы

Простейшей конструкцией кольцевого резонатора является соединение обоих концов WDM-ответвителя с активным волокном. Особенностью волоконных кольцевых резонаторов является пропускание света лишь в одном направлении независимо от частоты, за исключением некоторых резонансных частот. Набег фазы в таком резонаторе выражается формулой

где ϕ — набег фазы за счет длины резонатора, ρ = P o u t / P i n p >/P_ >> — отношение мощностей на выходе и на входе отрезка волокна, образующего резонатор. Обычно в кольцевых резонаторах применяются дополнительные изоляторы и поляризаторы, обеспечивающие сохранность поляризации излучения и однонаправленность его распространения. Подобные конструкции появились ещё в 1958 году для неодимовых волоконных лазеров. Для лазеров с синхронизацией мод используют так называемые резонаторы в форме восьмёрки (англ. figure-of-eight lasers), названные так за форму соединения волокна. Обе петли резонатора в виде восьмерки служат в качестве петель Саньяка. Активное волокно размещается несимметрично по отношению к петлям резонатора, что создает нелинейную разницу фаз между встречными волнами и обеспечивает синхронизацию мод при превышении некоторой пороговой мощности накачки.

Обычный кольцевой резонатор, встроенный в волоконный лазер. In: излучение накачки. Out: выходное излучение. 1: активное волокно. 2: поляризатор. 3: оптический изолятор. 4 WDM-ответвитель.

Волоконный лазер с кольцевым резонатором в форме восьмерки. In: излучение накачки. Out: выходное излучение. 1: активное волокно. 2: поляризатор. 3: оптический изолятор. 4 WDM-ответвитель. 50:50 делитель 50/50.

Технические особенности

Непрерывная и импульсная генерация

Лазеры непрерывной генерации

Исторически первыми вызвали интерес волоконные лазеры непрерывной генерации (англ. CW-lasers), легированные неодимом и работающие на длине волны около 0,8 мкм. Благодаря широкой полосе поглощения они хорошо перестраиваются в пределах 50—60 нм. Обычно они применяются для генерации на длинах волн более 1,36 мкм, для более коротких длин волн применяется легирование неодимом ZBLAN-волокон.

Иттербиевые лазеры по длинам волн генерации в значительной степени подобны неодимовым. Однако благодаря отсутствию поглощения с возбуждённых уровней (эффект, при котором возбуждённые энергетические уровни не только усиливают вынужденное излучение, но и поглощают излучение накачки, переходя на более высокий энергетический уровень) легирование ионами иттербия позволяет получить большую мощность. Верхний предел на их излучаемую мощность определяет плотность излучения, которая, превышая 1 ГВт/см2, может приводить к сильным нелинейным эффектам. Поэтому на практике ищется баланс между диаметром сердцевины, увеличение которого позволяет увеличить мощность накачки, и значением числовой апертуры, которая при этом уменьшается. 10-киловаттная мощность лазерной установки может потребовать диаметр сердцевины, равный 100 мкм, и внутреннюю оболочку (волновод накачки) диаметром в 1 мм, что не очень удобно. Одним из оригинальных решений для лазеров подобной мощности было изготовление волокна, в котором легированная сердцевина скручена в спираль.

Волоконные лазеры, использующие эрбиевое волокно (иногда с примесями Yb2O3 для сенсибилизации), позволяют получать генерацию как в видимом, так и в инфракрасном диапазоне. Для их накачки применяются GaAs-полупроводниковые и Nd:YAG лазеры. Они наиболее эффективны при накачке на длинах волн 0,95 мкм или 1,48 мкм, где отсутствует поглощение с возбуждённых уровней. Преимуществом эрбиевых лазеров является возможность перестройки длины волны в широком диапазоне, что также используется для уменьшения спектральной ширины линии генерации. С помощью связанных резонаторов был создан лазер, способный генерировать излучение на двух различных длинах волн с шириной каждой из них в 16 кГц.

Генерация наносекундных импульсов

Для получения мощных наносекундных импульсов с частотой следования в единицы и десятки килогерц часто применяется модуляция добротности (англ. Q-switching). Использующие её волоконные лазеры способны генерировать излучение с энергией порядка 1 мДж в импульсе с пиковой мощностью более 100 кВт.

Модуляция добротности на практике может достигаться различными способами. Внутрирезонаторные акустооптические модуляторы были использованы ещё в середине 1980-х, а к концу 1990-х стали применяться эрбиевые волоконные лазеры с длиной активного волокна до 79 см и площадью мод

работающие с помощью задающих генераторов (англ. master oscillator power amplifier, MOPA).

Нелинейные процессы во время рассеяния Рамана или Мандельштама — Бриллюэна, которые приводили к самомодуляции добротности обычного (не легированного) волокна, были известны довольно давно. В 1998 году была получена генерация импульсов длительностью 2 нс с помощью неодимового волоконного лазера, к которому было присоединено десятиметровое одномодовое волокно. Обратная волна Стокса заходила в резонатор лазера в виде коротких импульсов, что и приводило к необходимому режиму генерации. Через два года был продемонстрирован 4-метровый иттербиевый лазер, генерировавший импульсы длительностью около 100 нс. Необходимо отметить, что на практике без дополнительных устройств стохастическая природа этих типов рассеяния приводит к нестабильности амплитуды генерации.

Генерация пико- и фемтосекундных импульсов

Результатом является испускание лазером последовательности импульсов длительностью τ p = 1 ( 2 M + 1 ) Δ ν =<(2M+1)Delta u >>> с промежутком τ i = 1 Δ ν =>> между ними.

В волоконных лазерах используют несколько типов синхронизации мод. Активная синхронизация заключается в модуляции оптического поля по амплитуде или фазе. Для волоконных лазеров приемлемыми по габаритам и потерям при подключении к волоконным приборам являются LiNbO3-электрооптические модуляторы. Длительность импульсов и промежуток между ними определяются конструкцией резонатора. Так, в кольцевом резонаторе с подключённым к нему обычным волокном длиной 2 км с сильной аномальной дисперсией можно получить длительность импульса около 4 пс. Резонатор Фабри — Перо позволяет достичь длительностей τ p

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *