Известно не менее 20 видов т рнк чем обусловлено такое разнообразие
Известно не менее 20 видов т рнк чем обусловлено такое разнообразие
Подробное решение параграф §23 по биологии для учащихся 10 класса, авторов Теремов А.В., Петросова Р.А. Углубленный уровень 2017
Вспомните, какая структура белка определяет его строение и свойства. Как закодирована эта структура в молекуле ДНК?
Свойства белка определяются в первую очередь его первичной структурой – последовательностью аминокислот в полипептидной цепи. Именно первичная структура «записана» в гене, кодирующем данный белок. Информация в первичной структуре белка закодирована в молекуле ДНК в виде триплетов (участков из трех нуклеотидов в молекуле ДНК).
1. В каких органоидах клетки происходит биосинтез белка?
Биосинтез происходит в рибосомах.
2. Какое строение имеет молекула тРНК? Назовите её ключевые участки. Как происходит соединение тРНК с аминокислотой?
ней выделяют четыре главные части, выполняющие различные функции. Акцепторный «стебель» образуется двумя комплементарно соединенными концевыми частями тРНК. Он состоит из семи пар оснований. 3′ — конец этого стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН — группой. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей – антикодоновая – состоит из пяти пар нуклеотидов и содержит в центре своей петли антикодон. Антикодон – это три нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида.
Между акцепторной и антикодоновой ветвями располагаются две боковые ветви. В своих петлях они содержат модифицированные основания – дигидроуридин (D — петля) и триплет TψC, где \у – псевдоуриаин (Т^С — петля).
Между аитикодоновой и Т^С — ветвями содержится дополнительная петля, включающая от 3–5 до 13–21 нуклеотидов.
3. За счёт каких связей поддерживается конфигурация молекулы тРНК?
На краях нуклеотидов находится слишком много положительно и отрицательно заряженных частей, которые легко образуют водородные связи друг с другом.
4. Сколько видов тРНК имеется в клетке? Чем они отличаются друг от друга? Как объяснить, что число видов тРНК больше, чем число видов аминокислот, встречающихся в белках? Для ответа используйте рис. 86.
В клетке встречается 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Число видов тРНК выше, потому что в состав белков входит только 20 аминкоислот.
5. Охарактеризуйте этапы биосинтеза белка в клетке. Как связан биосинтез белка с другими реакциями матричного синтеза?
Этапы биосинтеза белка:
1) Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.
2) Процессинг (только уэукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков.
3) Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.
4) Синтез аминоацил — тРНК. В цитоплазме имеется 61 фермент аминоацил — тРНК — синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.
5) Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.
6) Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.
Биосинтез белка – это реакция матричного синтеза, потому что последовательность аминокислот в полипептиде жестко определена последовательностью нуклеотидов в гене (а непосредственно синтез белка, т. е. трансляция, идет с участием иРНК), но понятие «реакция матричного синтеза» шире, чем «синтез белка», потому что по такому типу также протекает репликация ДНК, транскрипция и некоторые другие процессы (например, синтез ДНК на РНК как на матрице).
6. Каким образом в клетке синтезируются одновременно несколько молекул одного и того же белка? Для ответа используйте рис. 87.
Для увеличения эффективности функционирования m — РНК часто соединяется не с одной, а с несколькими рибосомами. Такой комплекс называется полисомой, на котором протекает одновременный синтез нескольких полипептидных цепей.
7. Используя таблицу генетического кода (табл. 5), определите аминокислотный состав фрагмента полипептидной цепи, если участок гена на молекуле ДНК имеет следующую последовательность нуклеотидов:
ГАТ ГАТ ЦАГ ГАТ ГЦЦ ТГТ ЦТГ ТТЦ ААГ ГГА ЦТЦ АТТ.
ЦУА ЦУА ГУЦ ЦУА ЦГГ АЦА ГАЦ ААГ УУЦ ЦЦУ ГАГ УАА
Лей Лей Вал Лей Арг Тре Асп Лиз Фен Про Глу Стоп — Кадон
Известно не менее 20 видов т рнк чем обусловлено такое разнообразие
Подробное решение параграф § 26 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014
1. Какие функции выполняют в клетке белки?
Ответ. Белки играют исключительно большую роль в процессах жизнедеятельности клетки и организма, им свойственны следующие функции.
1. Структурная. Входят в состав внутриклеточных структур‚ тканей и органов. Например, коллаген и эластин служат компонентами соединительной ткани: костей‚ сухожилий‚ хрящей; фиброин входит в состав шелка‚ паутины; кератин входит в состав эпидермиса и его производных (волосы‚ рога‚ перья). Образуют оболочки (капсиды) вирусов.
3. Регуляторная. Например, гормоны инсулин и глюкагон регулируют обмен глюкозы. Белки–гистоны участвуют в пространственной организации хроматина, и тем самым влияют на экспрессию генов.
5. Защитная. Например, антитела (иммуноглобулины) образуют комплексы с антигенами бактерий и с инородными белками. Интерфероны блокируют синтез вирусного белка в инфицированной клетке. Фибриноген и тромбин участвуют в процессах свертывания крови.
6. Сократительная (двигательная). Белки актин и миозин обеспечивают процессы мышечного сокращения и сокращения элементов цитоскелета.
7. Сигнальная (рецепторная). Белки клеточных мембран входят в состав рецепторов и поверхностных антигенов.
Запасающие белки. Казеин молока, альбумин куриного яйца, ферритин (запасает железо в селезенке).
8. Белки-токсины. Дифтерийный токсин.
9. Энергетическая функция. При распаде 1 г белка до конечных продуктов обмена (СО2, Н2О, NH3, Н2S, SО2) выделяется 17‚6 кДж или 4‚2 ккал энергии.
2. Из чего состоят белки?
Ответ. Белки́ — высокомолекулярные органические вещества, состоящие из аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств.
Вопросы после §26
Ответ. Ген — материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.
2. Какой процесс называется транскрипцией?
3. Где и как происходит биосинтез белка?
Ответ. В цитоплазме происходит процесс синтеза белка, который по-другому называют трансляцией. Трансляция – это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка. С тем концом иРНК, с которого должен начаться синтез белка, взаимодействует рибосома. При этом начало будущего белка обозначается триплетом АУГ, который является знаком начала трансляции. Так как этот кодон кодирует аминокислоту метионин, то все белки (за исключением специальных случаев) начинаются с метионина. После связывания рибосома начинает двигаться по иРНК, задерживаясь на каждом ее участке, который включает в себя два кодона (т. е. 3 + 3 = 6 нуклеотидов). Время задержки составляет всего 0,2 с. За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Та аминокислота, которая была связана с этой тРНК, отделяется от «черешка» и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК, антикодон которой комплементарен следующему триплету в иРНК, и следующая аминокислота, принесенная этой тРНК, включается в растущую цепочку. После этого рибосома сдвигается по иРНК, задерживается на следующих нуклеотидах, и все повторяется сначала.
4. Что такое стоп-кодон?
Ответ. Стоп-кодоны (УАА, УАГ или УГА) не кодируют аминокислот, они только лишь показывают, что синтез белка должен быть завершен. Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры
5. Сколько видов тРНК участвует в синтезе белков в клетке?
6. Из чего состоит полисома?
Ответ. Клетке необходима не одна, а много молекул каждого белка. Поэтому как только рибосома, первой начавшая синтез белка на молекуле иРНК, продвигается вперед, тут же на эту иРНК нанизывается вторая рибосома, которая начинает синтезировать такой же белок. На ту же иРНК может быть нанизана и третья, и четвертая рибосома, и т. д. Все рибосомы, синтезирующие белок на одной молекуле иРНК, называются полисомой.
7. Требуют ли процессы синтеза белка затрат энергии? Или, наоборот, в процессах синтеза белка происходит выделение энергии?
Биология в лицее
Site biology teachers lyceum № 2 Voronezh city, Russian Federation
Молекула РНК (рибонуклеиновой кислоты) представляет собой неразветвленный полинуклеотид, обладающий третичной структурой. Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки.
Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.
РНК принадлежит главная роль в передаче и реализации наследственной информации. В соответствии с функцией и структурными особенностями различают три основных класса клеточных РНК:
Мономерами в рибонуклеиновой молекуле являются нуклеотиды, состоящие из остатка фосфорной кислоты, рибозы и азотистого основания (одного из четырех: аденина, гуанина, тимина или урацила).
Информационную РНК (иРНК) называют еще иногда матричной РНК (мРНК).
Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 5х10 4 до 4х10 6 ) и стабильности. Информационные РНК составляют 2 — 5% от общего количества рибонуклеиновых кислот в клетке.
Рибосомальная РНК (рРНК) в комплексе с белками образует рибосомы — органоиды, на которых происходит сборка белковых молекул.
Рибосомальные РНК состоят из 3 — 5 тыс. нуклеотидов, имеют молекулярную массу 1 — 1,5 млн.; рРНК составляют 80 — 85% от общего содержания рибонуклеиновых кислот в клетке. Рибосомальные РНК эукариотических и прокариотических клеток отличаются по размеру и синтезируются в клетках эукариот в ядрышке, а в клетках прокариот в цитоплазме.
Основное значение рРНК состоит в том, что они обеспечивают первоначальное связывание иРНК и рибосомы и формируют активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
Транспортные РНК (тРНК) играют роль посредников в биосинтезе белка — они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы.
Молекулы тРНК содержат обычно 75 — 95 нуклеотидов; молекулярная масса 25 — 30 тыс. На долю тРНК в клетке приходится около 10% от общей массы рибонуклеиновых кислот.
У молекул тРНК имеется несколько внутримолекулярных комплементарных участков, благодаря этому их третичная структура напоминает по форме клеверный лист. У каждой тРНК есть акцепторный участок (место прикрепления транспортируемой аминокислоты), петля для контакта с рибосомой, петля для контакта с ферментом и антикодоновая петля. Антикодон — это три нуклеотида антикодоновой петли, комплементарные соответствующему кодону иРНК.
В клетке содержится около 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Таким образом, конкретная тРНК может транспортировать только один вид аминокислоты, соответствующий ее антикодону.
РНК вирусов. Геном РНК-содержащих вирусов представлен двухспиральной либо односпиральной РНК. У некоторых вирусов геномные РНК сходны с иРНК эукариот и могут непосредственно транслироваться.
Сравнительная характеристика ДНК и РНК
Нуклеиновые кислоты
Строение нуклеотида
Функция в клетке
Особенность строения молекулы биополимера
1) остаток фосфорной кислоты
2) дезоксирибоза
3) азотистое основание (аденин, или гуанин, или цитозин, или тимин)
хранитель наследственной информации
1) остаток фосфорной кислоты
2) рибоза
3) азотистое основание (аденин, или гуанин, или цитозин, или урацил)
информационная, транспортная РНК принимают участие в синтезе белка
Задания части 2 ЕГЭ по теме «Биосинтез белка. Генетический код»
1. Почему реакции биосинтеза белка называют матричными?
В основе реакций матричного синтеза лежит комплементарное взаимодействие между нуклеотидами. Образуются полимеры, строение которых полностью определяется строением исходного вещества – матрицы. ДНК является матрицей для синтеза иРНК, а иРНК является матрицей для синтеза белка.
2. В каких случаях изменение последовательности нуклеотидов ДНК не влияет на структуру и функции соответствующего белка?
1) Если изменился третий нуклеотид триплета и получился триплет, кодирующий ту же самую аминокислоту.
2) Если изменения произошли в участке ДНК, который не кодирует белок.
3. Какова роль нуклеиновых кислот в биосинтезе белка?
ДНК содержит информацию для синтеза белка, иРНК переносит эту информацию к рибосоме, рРНК входит в состав рибосом, тРНК доставляет к рибосоме аминокислоты.
4. Чем объясняется огромное разнообразие белков, образующихся в живых организмах? Укажите не менее трех причин.
1) В состав белков входит 20 видов аминокислот. Количество вариантов белка, состоящего из ста аминокислот, составляет 20 в степени 100.
2) В состав белков могут входить разнообразные небелковые компоненты, например, углеводы в гликопротеинах, гем в гемоглобине.
3) Генные мутации, постоянно происходящие в организмах, приводят к изменению структуры белка, кодируемого данным геном.
5. Рассмотрите предложенную схему классификации реакций матричного синтеза. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
6. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участков молекул иРНК и ДНК, кодирующих данный белок, и число молекул тРНК, необходимых для переноса аминокислот к месту синтеза. Ответ поясните.
1) одну аминокислоту кодируют три нуклеотида, число нуклеотидов на иРНК: 220 х 3 = 660;
2) число нуклеотидов на иРНК соответствует числу нуклеотидов на одной нити ДНК (660 нуклеотидов);
3) каждую аминокислоту переносит к месту синтеза одна тРНК, следовательно, число тРНК, участвующих в синтезе, равно 220
7. Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны. (1) При биосинтезе белка протекают реакции матричного синтеза. (2) К реакциям матричного синтеза относят только реакции репликации и транскрипции. (3) В результате транскрипции синтезируется иРНК, матрицей для которой служит вся молекула ДНК. (4) Пройдя через поры ядра, иРНК поступает в цитоплазму. (5) Информационная РНК участвует в синтезе тРНК. (6) Транспортная РНК обеспечивает доставку аминокислот для сборки белка. (7) На соединение каждой из аминокислот с тРНК расходуется энергия молекул АТФ.
8. Лекарственный препарат рекомендуется принимать при инфекционно-воспалительных процессах в организме человека, вызванных патогенными бактериями. Препарат блокирует действие бактериальных белков-ферментов, регулирующих реакции с участием ДНК, что уменьшает рост и деление клеток бактерий, приводит к их гибели. На какие процессы в клетке бактерий воздействует этот препарат? Почему прекращается рост, деление и наблюдается гибель бактериальных клеток?
1) Препарат воздействует на процессы репликации и транскрипции.
2) Блокирование репликации не дает бактериальной клетке делиться.
3) Блокирование транскрипции не дает бактериальной клетке синтезировать белки, это приводит к гибели клетки.
9. Рассмотрите предложенную схему классификации реакций матричного синтеза. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
10. Рассмотрите предложенную схему классификации нуклеиновых кислот, участвующих в процессе биосинтеза белка. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
11. Как вы понимаете фразу: «Код ДНК триплетен, однозначен, вырожден»?
1) Код «триплетен» означает, что каждая из аминокислот кодируется тремя нуклеотидами.
2) Код «однозначен» — каждый триплет (кодон) кодирует только одну аминокислоту.
3) Код «вырожден» означает, что каждая аминокислота
может кодироваться более чем одним кодоном.
12. Найдите три ошибки в приведенном тексте «Реакции матричного типа». Укажите номера предложений, в которых они сделаны, исправьте их. Дайте правильную формулировку. (1) В матричных реакциях биосинтеза белка участвуют нуклеиновые кислоты. (2) В результате транскрипции синтезируется РНК, матрицей для которой служит участок ДНК. (3) Реакцию синтеза РНК катализирует фермент протеиназа. (4) Пройдя через поры ядерной оболочки, иРНК поступает в цитоплазму. (5) При трансляции на рибосомах осуществляется сборка молекул белка из аминокислот. (6) Информационная РНК служит матрицей для синтеза тРНК. (7) Последовательность соединения аминокислот в белке определяется последовательностью нуклеотидов в транспортной РНК.
1) 3 – реакцию синтеза РНК катализирует РНК-полимераза;
2) 6 – иРНК служит матрицей для синтеза белка (матрицей для синтеза тРНК служит участок молекулы ДНК);
3) 7 – последовательность соединения аминокислот в белке определяется последовательностью нуклеотидов в иРНК (ДНК)
Известно не менее 20 видов т рнк чем обусловлено такое разнообразие
Подробное решение параграф § 13 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014
Какова структура белков и нуклеиновых кислот?
Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации — вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.
ДНК – двойная спираль, РНК – одинарные цепи, состоящие из нуклеотидов.
Какие типы РНК вам известны?
и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.
т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.
р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.
Все виды РНК синтезируются на матрице ДНК.
Где образуются субъединицы рибосом?
р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.
Какую функцию рибосомы выполняют в клетке?
Биосинтез белка – сборка белковой молекулы
Вопросы для повторения и задания
1. Вспомните полное определение понятия «жизнь».
Ф. Энгельс «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка. И у неорганических тел может происходить подобный обмен веществ, который и происходит с течением времени повсюду, так как повсюду происходят, хотя бы и очень медленно, химические действия. Но разница заключается в том, что в случае неорганических тел обмен веществ разрушает их, в случае же органических тел он является необходимым условием их существования»
2. Назовите основные свойства генетического кода и поясните их значение.
Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов, т.е. закодировать 64 аминокислоты, но в живом используется только 20.
Код однозначен – каждый триплет шифрует только одну аминокислоту.
Между генами имеются знаки препинания – знаки необходимы для правильной группировки в триплеты монотонной последовательности нуклеотидов, т.к. между триплетами нет знаков раздела. Роль разметки генов выполняют три триплета, не кодирующие никаких аминокислот – УАА, УАГ, УГА. Они означают конец белковой молекулы, как точка в предложении.
Внутри гена нет знаков препинания – поскольку генкод подобен языку; посмотрим это свойство на примере фразы:
ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ
Ген хранится в таком виде:
Смысл будет восстановлен, если правильно сгруппировать тройки, даже при отсутствии знаков препинания. Если же мы начнем группировку со второй буквы (второго нуклеотида), то получится такая последовательность:
ИЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ
Эта последовательность уже не имеет биологического смысла, и если она будет реализована, то получится чужеродное для данного организма вещество. Поэтому ген в цепи ДНК имеет строго фиксированное начало считывания и завершение.
Код универсален – един для всех живущих на Земле существ: у бактерии, грибов, человека одни и те же триплеты кодируют одни и те же аминокислоты.
3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
В основе передачи наследственной информации из поколения в поколение лежит мейоз. Транскрипция (от лат. transcription — переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК. Трансляция (от лат. trans lation — передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации — перевод информации с «языка» РНК на «язык» белка.
4. Где синтезируются все виды рибонуклеиновых кислот?
Все виды РНК синтезируются на матрице ДНК.
5. Расскажите, где происходит синтез белка и как он осуществляется.
Этапы биосинтеза белка:
– Транскрипция (от лат. переписывание): процесс синтеза и-РНК на матрице ДНК, это перенос генетической информации с ДНК на РНК, транскрипция катализируется ферментом РНК-полимеразой. 1) Движения РНК-полимеразы – расплетание и восстановление двойной спирали ДНК, 2) Информация с гена ДНК – на и-РНК по принципу комплементарности.
– Соединение аминокислот с т-РНК: Строение т-РНК: 1) аминокислота ковалентно присоединяется т-РНК с помощью фермента т-РНК-синтетазы соответвственно антикодону, 2) К черешку листа т-РНК присоединяется определенная аминокислота
– Трансляция: рибосомный синтез белка из аминокислот на и-РНК, протекающий в цитоплазме. 1) Инициация — начало синтеза. 2) Элонгация — собственно синтез белка. 3) Терминация — узнавание стоп-кодона – окончание синтеза.
6. Рассмотрите рис. 45. Определите, в каком направлении — справа налево или слева направо — движется относительно и-РНК изображённая на рисунке рибосома. Докажите свою точку зрения.
и-РНК движется свела направо рибосома всегда движется в противоположном направлении, чтобы не мешать процессы, так как на одной нити и-РНК одновременно может сидеть несколько рибосом (полисома). А также показано в какую сторону движутся т-РНК – справа налево как и рибосома.
Подумайте! Вспомните!
1. Почему углеводы не могут выполнять функцию хранения информации?
Нет принципа комплементарности у углеводов, невозможно создавать генетические копии.
2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?
Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника — подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.
3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?
В состоянии спирализации, так как в таком состоянии ДНК входит в состав хромосом.
4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?
и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка. Состав РНК – нуклеотиды комплементарные нуклеотидам ДНК, малый размер по сравнению с ДНК (что обеспечивает выход из ядерных пор).
5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.
Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов (43), т.е. закодировать 64 аминокислоты, но в живом используется только 20. Это необходимо для замены любого нуклеотида, если вдруг в клетке его нет, то нуклеотид будет автоматически заменен на аналогичный, кодирующий эту же аминокислоту. Если бы было три нуклеотида, то 33 это будет всего 9 аминокислот, что невозможно, так как необходимо 20 аминокислот для любого организма.
6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.
Матрица экрана ноутбука
Матрица жидко-кристаллических экранов
7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.
Генетический код зашифрован в и-РНК, значит – белого медведя.