как можно ослабить магнитное поле катушки с током

Правило Ленца

теория по физике 🧲 магнетизм

Если присоединить катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке, или удаляется от нее. Причем возникающий индукционный ток взаимодействует с магнитом — притягивает или отталкивает его.

Катушка с протекающей по ней током подобна магниту с двумя полюсами — северным и южным. Направление индукционного тока определяет, какой конец катушки играет роль северного полюса, из которого выходят линии магнитной индукции. В каких случаях катушка будет притягивать магнит, а в каких отталкивать, можно предсказать, опираясь на закон сохранения энергии.

Взаимодействие индукционного тока с магнитом

Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.

Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.

Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.

Правило Ленца

Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.

Правило направления индукционного тока носит название правила Ленца.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Применять правило Ленца для нахождения направления индукционного тока I i в контуре надо так:

Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с токомМедное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с токомК каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

МАГНИТПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ
А)движется по направлению к кольцу, северный полюс обращён к кольцу1)коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке
Б)движется к кольцу, к кольцу обращён южный полюс2)коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки
3)коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке
4)коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки

Алгоритм решения

Решение

Запишем правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.

Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.

Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.

pазбирался: Алиса Никитина | обсудить разбор | оценить

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с токомНа рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом. Это движение кольца – результат действия

а) силы гравитационного взаимодействия между кольцом и магнитом

б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток

в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца

г) воздушных потоков, вызванных движением руки и магнита

Алгоритм решения

Решение

Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.

Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.

Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.

Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.

pазбирался: Алиса Никитина | обсудить разбор | оценить

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с токомКатушка № «>№ 1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка № «>№ 2 помещена внутрь катушки № «>№ 1 и замкнута (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.

А) Сила тока в катушке № 1 увеличивается.

Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.

В) Магнитный поток, пронизывающий катушку № 2, увеличивается.

Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.

Д) В катушке № 2 индукционный ток направлен по часовой стрелке.

Алгоритм решения

Решение

Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.

Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.

Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.

Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.

Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке 2 направлен по часовой стрелке. Утверждение Д — верно.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Магнитное поле катушки с током

Конспект по физике для 8 класса «Магнитное поле катушки с током». Что такое соленоид. Что собой представляют силовые линии магнитного поля катушки с током. Как можно усилить магнитное действие катушки с током. Что такое электромагнит.

Магнитное поле катушки с током

Как показывает опыт, магнитное поле проводника с током можно существенно усилить, если этот проводник свернуть в форме спирали.

МАГНИТНОЕ ПОЛЕ КАТУШКИ С ТОКОМ

Катушку с намотанным на цилиндрическую поверхность изолированным проводником, по которому течёт электрический ток, называют соленоидом (от греч. solen — трубка).

Соберём электрическую цепь, состоящую из источника тока, ключа и провода, намотанного на катушку. Если замкнуть цепь, через катушку потечёт электрический ток. Лёгкие железные предметы, расположенные около катушки, будут притягиваться к её концам. Если цепь разомкнуть, все предметы отпадут.

Теперь подвесим катушку на гибких проводниках. При замыкании ключа в катушке возникает ток, в результате чего она поворачивается. При этом направление оси катушки будет совпадать с направлением магнитной стрелки компаса: один конец катушки будет обращён к северу, а другой — к югу. Таким образом, катушка с током приобретает свойства магнита.

Если поменять направление тока в катушке, то она повернётся на угол 180°. Это ещё раз подтверждает тот факт, что направление линий магнитного поля связано с направлением тока в проводнике.

МАГНИТНЫЕ ЛИНИИ

Магнитное поле катушки с током можно обнаружить так же, как и магнитное поле прямого тока: при помощи железных опилок. Для этого используют стеклянную пластинку, сквозь которую пропущен проводник в виде катушки.

На стеклянную пластинку насыпают железные опилки, а через катушку пропускают электрический ток. При этом железные опилки располагаются в строго определённом порядке.

Силовые линии магнитного поля катушки с током являются замкнутыми кривыми. Внутри катушки они параллельны друг другу, а на концах расходятся и замыкаются вне катушки.

Для определения направления линий магнитного поля катушки с током используют правило правой руки: если мысленно обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

МАГНИТНОЕ ДЕЙСТВИЕ КАТУШКИ С ТОКОМ

Рассмотрим, при каких условиях действие магнитного поля катушки с током может усиливаться или ослабевать.

Соберём цепь из источника тока, ключа и катушки. Будем поочерёдно подключать катушки с разным количеством витков.

Катушка с большим количеством витков при протекании тока по ней притягивает большее количество мелких железных предметов, чем катушка с меньшим количеством витков. Поэтому можно сказать, что магнитное действие катушки с током тем сильнее, чем больше в ней витков.

Продолжим опыт. Соберём цепь из источника тока, ключа, катушки, амперметра и реостата. С помощью реостата будем изменять силу тока в цепи. При увеличении силы тока катушка притягивает всё больше металлических предметов. Магнитное действие катушки с током тем больше, чем больше значение силы тока.

Магнитное действие катушки с током можно усилить, не меняя силу тока и число витков в ней. Для этого нужно ввести внутрь катушки железный стержень (сердечник). Катушка с железным сердечником внутри называется электромагнитом.

Электромагниты широко применяются в технике. Например, их используют для подъёма и переноски тяжёлых стальных или чугунных грузов. При включении тока эти предметы притягиваются к электромагниту, при выключении — свободно отсоединяются.

Огромные электромагниты используют в современных экспериментальных физических установках, например на Большом адронном коллайдере. Магнитное поле, создаваемое катушкой с током, размеры которой сравнимы с многоэтажным домом, помогает управлять движением заряженных частиц и изучать их свойства.

Вы смотрели Конспект по физике для 8 класса «Магнитное поле катушки с током».

Источник

Магнитное поле катушки с током – энергия системы

Движущийся электрический заряд создает в окружающем пространстве магнитное поле. Поток электронов, проходящих по проводнику создают магнитное поле вокруг проводника. Если металлический провод намотать кольцами на какой-нибудь стержень, то получится катушка. Оказывается магнитное поле, создаваемое такой катушкой, обладает интересными и, самое главное, полезными свойствами.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

как можно ослабить магнитное поле катушки с током. Смотреть фото как можно ослабить магнитное поле катушки с током. Смотреть картинку как можно ослабить магнитное поле катушки с током. Картинка про как можно ослабить магнитное поле катушки с током. Фото как можно ослабить магнитное поле катушки с током

Рис. 3. Катушки индуктивности, дроссель, соленоид

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

N — число витков катушки;

S — площадь поперечного сечения катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Источник

Электромагниты — магнитное поле катушки с током

Наибольший практический интерес представляет собой магнитное поле катушки с током. На рисунке 97 изображена катушка, состоящая из большого числа витков провода, намотанного на деревянный каркас. Когда в катушке есть ток, железные опилки притягиваются к её концам, при отключении тока они отпадают.

Рис. 97. Притяжение железных опилок катушкой с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой — к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса — северный и южный (рис. 98).

Рис. 98. Полюсы катушки с током

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого тока, можно обнаружить при помощи опилок (рис. 99). Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному (см. рис. 99).

Рис. 99. Магнитные линии катушки с током

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять (усиливать или ослаблять) в широких пределах. Рассмотрим способы, при помощи которых можно это делать.

На рисунке 97 изображён опыт, в котором наблюдается действие магнитного поля катушки с током. Если заменить катушку другой, с большим числом витков проволоки, то при той же силе тока она притянет больше железных предметов. Значит, магнитное действие катушки с током тем сильнее, чем больше число витков в ней

Включим в цепь, содержащую катушку, реостат (рис. 100) и при помощи него будем изменять силу тока в катушке. При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении — ослабляется

Рис. 100. Действие магнитного поля катушки

Оказывается также, что магнитное действие катушки с током можно значительно усилить, не меняя число её витков и силу тока в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железо, введённое внутрь катушки, усиливает магнитное действие катушки

Рис. 101. Действие магнитного поля катушки с железным сердечником

Катушка с железным сердечником внутри называется электромагнитом.

Электромагнит — одна из основных деталей многих технических приборов. На рисунке 102 изображён дугообразный электромагнит, удерживающий якорь (железную пластинку) с подвешенным грузом.

Рис. 102. Дугообразный электромагнит

Электромагниты широко применяют в технике благодаря их замечательным свойствам. Они быстро размагничиваются при выключении тока, в зависимости от назначения их можно изготавливать самых различных размеров, во время работы электромагнита можно регулировать его магнитное действие, меняя силу тока в катушке.

Электромагниты, обладающие большой подъёмной силой, используют на заводах для переноски изделий из стали или чугуна, а также стальных и чугунных стружек, слитков (рис. 103).

Рис. 103. Применение электромагнитов

На рисунке 104 показан в разрезе магнитный сепаратор для зерна. В зерно подмешивают очень мелкие железные опилки. Эти опилки не прилипают к гладким зёрнам полезных злаков, но прилипают к зёрнам сорняков. Зёрна 1 высыпаются из бункера на вращающийся барабан 2. Внутри барабана находится сильный электромагнит 5. Притягивая железные частицы 4, он извлекает зёрна сорняков из потока зерна 3 и таким путём очищает зерно от сорняков и случайно попавших железных предметов.

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

1.17. Закон Био–Савара. Теорема о циркуляции

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.

Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

которая уже приводилась в § 1.16.

Рисунок 1.17.1.
Иллюстрация закона Био–Савара

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где R – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.
Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).

Рисунок 1.17.2.
Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле

Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 Читайте также: Как изменить направление вращения однофазного двигателя переменного тока

Так, при увеличении силы тока в проводах катушки возрастает сила магнитного поля, и, наоборот, при уменьшении силы тока, магнитное поле ослабевает. То есть, при элементарном подключении реостата, мы получаем регулируемый магнит.

Магнитное поле катушки с током можно значительно усилить, введя внутрь спирали железный стержень. Он называется сердечником. Применение сердечника позволяет создавать очень мощные магниты. Например, в производстве используют магниты, способные поднимать и удерживать несколько десятков тонн веса. Это достигается следующим образом.

Сердечник изгибают в виде дуги, а на два его конца надевают две катушки, по которым пускают ток. Катушки соединяют проводами 4е так, что их полюса совпадают. Сердечник усиливает их магнитное поле. Снизу к этой конструкции подводят пластину с крюком, на который подвешивают груз. Подобные устройства используют на заводах и в портах для того, чтобы перемещать грузы очень большого веса. Эти грузы легко подсоединяются и отсоединяются при включении и отключении тока в катушках.

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

N — число витков катушки;

S — площадь поперечного сечения катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *