Понятие функции — одно из ключевых в математике. О нём подробно рассказано в статье «Что такое функция».
И конечно, в задачах части 2 Профильного ЕГЭ по математике без них не обойтись. А если вы выбрали технический или экономический вуз — первая же лекция по матанализу будет посвящена именно элементарным функциями и их графикам.
Но это не всё. Математические функции, изучением которых мы занимаемся, — это не что-то такое выдуманное или существующее только в замкнутом пространстве учебника. Они являются отражением реальных взаимосвязей и процессов, происходящих в природе и обществе.
Существует всего пять типов элементарных функций:
2. Показательные Это функции вида y = a x
4. Тригонометрические В их формулах присутствуют синусы, косинусы, тангенсы и котангенсы.
Элементарными они называются потому, что из них, как из элементов, получаются все остальные, встречающиеся в школьном курсе. Например, y = x 2 · e x — произведение квадратичной и показательной функций; y = sin(a x ) — сложная функция, то есть комбинация двух функций — показательной и тригонометрической.
Графики и свойства основных элементарных функций следует знать наизусть.
Показательная функция y = a x
a > 1
0 1
0 2 + 5? Об этом — статья «Преобразования графиков функций».
Обратите внимание: уравнения, которые вы решаете, обычно относятся к одному из этих пяти типов. Для каждого типа — свои способы решения. Это и понятно: они основаны на тех или иных свойствах функций.
Почему в уравнении 3 x = 3 5 мы можем «отбросить» основания и записать, что x = 5? Да потому что показательная функция y = 3 x возрастает и каждое значение принимает только один раз.
Почему уравнение имеет бесконечно много решений, которые записываются в виде серии: , где n — целое? Потому что функция y = sinx — периодическая, то есть каждое свое значение принимает бесконечно много раз.
Зная графики элементарных функций, вы уже не запутаетесь с ОДЗ уравнений и неравенств. Вы сможете решать сложные задачи графически — а это часто во много раз легче и быстрее, чем аналитически.
Есть еще и такие уравнения, где слева и справа стоят функции разных типов. Для их решения есть графический способ, а также специальные приемы, о которых рассказывается в статье «Метод оценки».
Основные элементарные функции: их свойства и графики
Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.
Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.
Выделяют следующие виды основных элементарных функций:
Постоянная функция
Свойства постоянных функций:
Корень n-й степени
Данная элементарная функция определяется формулой y = x n ( n – натуральное число больше единицы).
Рассмотрим две вариации функции.
Похожий вид у графиков функции четной степени при иных значениях показателя.
Свойства функции корень n-ой степени, n – четное число
Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.
Свойства функции корень n-ой степени, n – нечетное число
Степенная функция
Вид графиков и свойства функции зависят от значения показателя степени.
Степенная функция при нечетном положительном показателе
Свойства степенной функции, когда показатель степени – нечетный положительный
Степенная функция при четном положительном показателе
Свойства степенной функции, когда показатель степени – четный положительный:
Степенная функция при нечетном отрицательном показателе
Свойства степенной функции, когда показатель степени – нечетный отрицательный:
Степенная функция при четном отрицательном показателе степени
Свойства степенной функции, когда показатель степени – четный отрицательный:
Степенная функция при рациональном или иррациональном показателе (значение больше нуля и меньше единицы)
Иные значения показателя степени a (при условии 0 a 1 ) дадут аналогичный вид графика.
Свойства степенной функции при 0 a 1 :
Степенная функция при нецелом рациональном или иррациональном показателе степени (больше единицы)
Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.
Свойства степенной функции при a > 1 :
Степенная функция при действительном показателе степени (больше минус единицы и меньше нуля)
Степенная функция при нецелом действительном показателе степени (меньше минус единицы)
Показательная функция
Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы ( 0 a 1 ) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).
Свойства показательной функции, когда основание меньше единицы:
Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).
Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.
Свойства показательной функции, когда основание больше единицы:
Логарифмическая функция
График логарифмической функции имеет различный вид, исходя из значения основания а.
Иные значения основания, не большие единицы, дадут аналогичный вид графика.
Свойства логарифмической функции, когда основание меньше единицы:
Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже – графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).
Иные значения основания больше единицы дадут аналогичный вид графика.
Свойства логарифмической функции, когда основание больше единицы:
Тригонометрические функции, их свойства и графики
Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.
В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f ( x + T ) = f ( x ) ( T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.
График данной функции называется синусоида.
Свойства функции синус:
График данной функции называется косинусоида.
Свойства функции косинус:
График данной функции называется тангенсоида.
Свойства функции тангенс:
График данной функции называется котангенсоида.
Свойства функции котангенс:
Обратные тригонометрические функции, их свойства и графики
Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.
Изучение свойств функций и их графиков занимает значительное место как в школьной математике, так и в последующих курсах. Причем не только в курсах математического и функционального анализа, и даже не только в других разделах высшей математики, но и в большинстве узко профессиональных предметов. Например, в экономике – функции полезности, издержек, функции спроса, предложения и потребления. в радиотехнике – функции управления и функции отклика, в статистике – функции распределения. Чтобы облегчить дальнейшее изучение специальных функций, нужно научиться свободно оперировать графиками элементарных функций. Для этого после изучения следующей таблицы рекомендую пройти по ссылке “Преобразования графиков функций”. и/или по ссылке Построение графиков, содержащих модуль аргумента или модуль функции, а также сумму или разность нескольких модулей.
С 17.04.21 до экзаменв просмотр по кнопке ОТКРЫТ.
В школьном курсе математики изучаются следующие элементарные функции.
Степенная
y = x 3
Кубическая парабола
Самый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе “Движение графиков функций”.
Степенная
y = x 1/2
График функции y = √x
Самый простой случай для дробной степени (x 1/2 = √x). Случаи с коэффициентами изучаются в разделе “Движение графиков функций”.
Показательная
y = a x
График показательной функции
Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5 x (a = 1/2 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1).
Логарифмическая
y = logax
График логарифмической функции
Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2
На сервере youtube.com открыт канал Mathematichka, на котором размещаются видео, связанные с изучением графиков функций и экзаменационными задачами на эту тему. Подписывайтесь и пишите в комментариях свои вопросы и пожелания.
Пример такого видео.
Перейти на главную страницу.
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Выделяют множество видов элементарных функций, каждый из которых обладает собственным набором свойств. Так, одни можно дифференцировать на определенном промежутке бесконечное число раз, другие являются непрерывными, ортогональными и др. В этой статье мы расскажем об общепринятой классификации элементарных функций.
Что такое элементарные функции
Начнем с базового определения.
Элементарные функции – это такие функции, которые получаются из основных функций с помощью сложения, вычитания, умножения и деления, а также посредством преобразования сложных функций.
Таким функции бывают:
В свою очередь алгебраические функции можно разделить на иррациональные и рациональные (целые рациональные и дробные рациональные).
Рассмотрим каждый вид функций отдельно.
Понятие алгебраических функций
Алгебраические функции – это функции, которые состоят из цифр и букв, соединяющихся друг с другом при помощи знаков сложения, вычитания, умножения, деления, извлечения корня и возведения в целую степень.
Иными словами, это те функции, которые можно получить из основных функций f ( x ) = x и f ( x ) = 1 и любых чисел, проведя с ними необходимые алгебраические действия (вычитание, умножение, сложение, деление и др.)
Выделяют рациональные и иррациональные алгебраические функции.
Рациональные функции – это те, в которых аргумент не находится под знаком корня (радикала). Они в свою очередь делятся на целые рациональные (т.е. многочлены) и дробные рациональные (выражения, составленные из многочленов).
Иррациональные функции – это те, которые содержат в себе аргумент под знаком корня (радикала).
Понятие трансцендентных функций
Прочие функции, которые нельзя отнести к алгебраическим, относятся к виду трансцендентных.
Трансцендентные функции – это те, которые образуются при помощи логарифмирования, возведения в иррациональную степень или с помощью тригонометрических и обратных тригонометрических преобразований.
Пусть дано числовое множество \(X\subset\mathbb\). Если каждому \(x\in X\) поставлено в соответствие по некоторому правилу число \(y\). то говорят, что на множестве \(X\) определена числовая функция.
Правило, устанавливающее соответствие, обозначают некоторым символом, например, \(f\) и пишут $$ y=f(x),\;x\in X,\label $$ а множество \(X\) называют областью определения функции и обозначают \(D(f)\), то есть \(X=D(f)\).
\(x\) часто называют аргументом или независимой переменной, а \(y\) — зависимой переменной. Числа \(x\) из множества \(D(f)\) называют значениями аргумента. Число \(y_0\), соответствующее значению \(x_<0>\in D(f)\), называют значением функции при \(x=x_<0>\) (или значением функции в точке \(x_0\)) и обозначают \(f(x_0)\) или \(f(x)|_>\). Совокупность всех значений, которые функция принимает на множестве \(D(f)\), называют множеством значений функции и обозначают \(E(f)\). Заметим, что если \(y_0\in E(f)\), то существует по крайней мере одно число \(x_<0>\in D(f)\) такое, что \(f(x_0)=y_0\).
Функцию часто обозначают только символом (\(f,\;\varphi,\;F\) и т. д.), который определяет правило (закон) соответствия. Для обозначения функции используются также записи вида \(x\mapsto f(x),\;f:\;X\rightarrow Y\). Под словом «функция» часто понимают зависимую переменную \(у\), значения которой определяются значениями независимой переменной \(x\) и правилом \(f\), или даже само это правило. Термин «функция» имеет синонимы: отображение, преобразование, морфизм. Например, говорят, что функция \(f\) отображает множество \(X=D(f)\) на множество \(Y=E(f)\), и называют множество \(Y\) образом множества \(X\) при отображении \(f\). Если \(E(f)\subset E_1\), то говорят, что функция \(f\) отображает \(X\) в \(E_1\).
Равенство функций. Операции над функциями.
Функции \(f\) и \(g\) называют равными или совпадающими, если они имеют одну и ту же область определения \(X\) и для каждого \(x\in X\) значения этих функций совпадают. В этом случае пишут \(f(x)=g(x),\ x\in X\) или \(f=g\).
Например, если \(f(x)=\sqrt>, \ x\in\mathbb\),и \(g(x)=|x|, \ x\in\mathbb\), то \(f=g\), так как при всех \(x\in\mathbb\) справедливо равенство \(\sqrt>=|x|\).
Если равенство \(f(x)=g(x)\) верно при всех \(x\in E’\), где \(E’\subset D(f)\cap D(g)\), то есть сужения функций f и g на множество \(E’\) совпадают, то в этом случае говорят, что функции \(f\) и \(g\) равны на множестве \(E’\). Например, функции \(\sqrt>\) и \(x\) равны на множестве \( E’=[0,+\infty\)).
Способы задания функции.
Числовые функции чаще всего задаются при помощи формул. Такой способ задания называют аналитическим. Например, функции \(y=x^2, \ y=|x|^<3>, \ y=\sin^3<3x>\) заданы на множестве \(\mathbb\) аналитически.
Следует отметить, что функция может быть задана различными формулами на разных промежутках. Например, функция $$ f(x)=\left\<\begin-x,\quad если\;x\; 1,\end\right.\nonumber $$ задана аналитическим способом на \(\mathbb\) с помощью трех различных формул.
Иногда функциональная зависимость описывается с помощью таблицы, содержащей лишь некоторые значения аргумента и соответствующие значения функции. Для значений аргумента, не содержащихся в таблице, значения функции обычно находят приближенно.
На практике часто соответствие между значениями аргумента и значениями функции задается с помощью рисунка. Например, в медицине при изучении работы сердца получают электрокардиограммы — кривые, отражающие изменение с течением времени электрических импульсов в мышце сердца. В практике физических измерений функциональная зависимость часто задается с помощью эскиза графика, снимаемого, например, с экрана осциллографа.
График функции.
Графиком функции \(y=f(x), x\in D(f),\) в прямоугольной системе координат \(Oxy\)-называют множество всех точек плоскости с координатами \((x,f(x)\overline<)>\), где \(x\in D(f)\).
Строго говоря, следует различать график функции, точное определение которого дано выше, и эскиз части графика, принимаемый нередко за график.
Пусть \(x\in[n,n+1\)), где \(n\in Z\), тогда \(E(x)=n\). График функции \(y=E(z)\) изображен на рис. 9.1. Стрелка на графике указывает на то, что точка в ее острие не принадлежит графику.
Рис. 9.1
Построить график функции \(y=sign\;\sin x\) где $$ \operatorname\;x=\left\<\begin1,\quad если\quad x>0,\\0,\quad если\quad x=0,\\-1,\quad если\quad x\; Решение
Рис. 9.2
График функции \(y=f(x)\) иногда можно получить преобразованием известного графика другой функции \(y=g(x)\).
Функция \(y=f(x)\)
Преобразование графика функции \(y=g(x)\)
\(y=g(x)+A\)
Сдвиг (параллельный перенос) вдоль оси ординат на A
\(y=g(x-a)\)
Сдвиг вдоль оси абсцисс на а
\(y=g(-x)\)
Симметрия относительно оси ординат
\(y=-g(x)\)
Симметрия относительно оси абсцисс
\(y=Bg(x)\)
Умножение каждой ординаты на B, где \(b\neq 0\)
\(y=g(kx)\)
Деление каждой абсциссы на k, где \(k\neq 0\)
Приведем примеры применения преобразований, указанных в таблице.
График квадратичной функции $$ y=ax^<2>+bx+c,\quad a\neq 0,\label $$ можно получить сдвигом графика функции \(у=ах\) вдоль оси \(Ox\).
\(\triangle\) Действительно, выделяя полный квадрат, получаем $$ ax^2+bx+c=a(x+\displaystyle \frac<2a>)^<2>+c-\frac><4a>.\nonumber $$ Поэтому графиком квадратичной функции \eqref является парабола, получаемая сдвигом параболы \(y=ax^<2>.\quad\blacktriangle\)
Рис. 9.3
График дробно-линейной функции $$ y=\displaystyle \frac,\quad c\neq 0,\quad ad-bc\neq 0,\label $$ можно получить преобразованием графика функции вида \(y=\displaystyle \frac\).
В частности, если \(y=\displaystyle \frac<3-2x>\), то \(y=\displaystyle \frac<5-2(x+1)>=-2+\frac<5>\).
Рис. 9.4
Построить график функции \(y=\sqrt<-x>\).
\(\triangle\) График функции \(y=\sqrt<-x>\) можно получить из графика функции \(y=\sqrt\) с помощью симметрии относительно оси ординат (рис. 9.5).\(\blacktriangle\)
Отметим еще, что график функции \(y=|f(x)|\) можно получить из графика функции \(у=f(x)\) следующим образом:
Построить график функции \(y=|x^<2>-2x|.\)
\(\triangle\) Применяя указанный выше прием, строим график этой функции (рис. 9.6) с помощью графика функции \(y=x^<2>-2x\) (рис.9.3). \(\blacktriangle\)
Четные и нечетные функции.
Функция f, определенная на множестве X, называется:
Четными являются, например, следующие функции: \(\displaystyle y=x^<4>,\;y=\cos\frac<2>,\;y=\lg |x|,\;y=\frac<\sin x>\), а нечетными — функции \(y=\displaystyle \frac<1>>,\ y=\sin^<5>2x, y=x^<2>\displaystyle \operatorname\frac<2>,\ y=\arcsin(\sin x)\).
График четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.
Построить график функции \(y=x^<2>-2|x|.\)
\(\triangle\) Если \(x\geq 0,\) то \(y =x^2-2x\) (см. рис. 9.3). Так как \(x^<2>-2|x|\)— четная функция, то для функции, соответствующей значениям \(x\leq 0\), следует симметрично отразить график \(y=x^<2>-2x, x\geq 0,\) относительно оси \(Oy\) (рис. 9.7). \(\blacktriangle\)
На рис. 9.8 изображен график нечетной функции \(y=x^<3>.\)
Рис. 9.8
Ограниченные и неограниченные функции.
Функцию f называют ограниченной снизу на множестве \(X\subset D(f)\), если существует число \(С_1\) такое, что для любого \(x\in X\) выполняется неравенство \(f(x) \geq C_1\).
Используя символы \(\exists\) и \(\forall\), это определение можно записать так: $$ \exists C_<1>:\forall x\in X\rightarrow f(x)\geq C_<1>.\nonumber $$ Аналогично функцию f называют ограниченной сверху на множестве \(X\subset D(f)\), если $$ \exists C_<2>:\forall x\in X\rightarrow f(x)\leq C_<2>.\nonumber $$
Функцию, ограниченную и сверху, и снизу на множестве X, называют ограниченной на этом множестве.
Функция f является ограниченной на множестве X тогда и только тогда, когда $$ \exists c>0:\forall x\in X\rightarrow|f(x)|\leq C.\label $$
Если неравенство \(|f(x)|\leq C\) выполняется для всех \(x\in D(f)\), говорят, что функция f ограничена.
Геометрически ограниченность функции f на множестве X означает, что график функции \(y=f(x), x\in X,\) лежит в полосе \(<-C\leq y\leq C>.\)
Например, функция \(y=\displaystyle \sin\frac<1>\), определенная при \(x\in\mathbb, x\neq 0\), ограничена, так как $$ |\sin\frac<1>|\leq 1\nonumber $$
Функция f не ограничена на множестве X, если условие \eqref не выполняется, то есть $$ \forall C>0\ \exists x_\in X:|f(x_)|\geq C.\label $$
Если \(X= D(f)\) и выполнено условие \eqref, то говорят, что функция f не ограничена.
Доказать, что функция \(y=\displaystyle \frac<1>>\) не ограничена.
\(\triangle\) Функция \(\displaystyle \frac<1>>\) определена при \(x\in\mathbb\), \(x\neq 0\). Пусть C — любое положительное число, и пусть \(\displaystyle =\frac<1><\sqrt<2C>>>\), тогда \(\displaystyle y(x_)=2C>C\) то есть выполняется условие \eqref. \(\blacktriangle\)
Пусть существует точка \(x_<0>\in X\subset D(f)\) такая, что для всех \(x\in X\) выполняется неравенстве \(f(x) \leq f(x_0)\).Тогда говорят, что функция f принимает в точке \(x_<0>\) наибольшее (максимальное) значение на множествеX и пишут \(f(x_<0>)=\displaystyle \max_f(x)\) В этом случае \(\displaystyle \sup_=f(x_<0>) \)
Максимальные и минимальные значения называют экстремальными.
Монотонные функции.
Функцию \(f\) называют возрастающей (неубывающей) на множестве \(X\subset D(f)\), если для любых точек \(x_1 \in X, x_<2>\in X\) таких, что \(x_<1>\; f(x_<2>).\nonumber $$
Убывающие и возрастающие функции объединяют названием монотонные, а строго возрастающие и строго убывающие — названием строго монотонные.
Если \(X=D(f)\), то в этих определениях указание на множество \(X\) обычно опускают.
Доказать, что функция f строго возрастает на множестве X, если: