какое поле является вихревым
Вихревой характер магнитного поля
Вихревой характер магнитного поля заключается в непрерывности линий индукции любого магнитного поля при отсутствии начала и конца, так как они либо замкнуты, либо уходят в бесконечность. На порождение полей не влияет характер контуров с током. Векторные поля, обладающие непрерывными силовыми линиями, называются вихревыми полями. Магнитное поле также можно считать вихревым.
Электростатические поля имеют силовые линии, начинающиеся и заканчивающиеся на электрических зарядах, причем, всегда находятся в разомкнутом состоянии. Линии магнитного поля замкнуты. Это говорит об отсутствии магнитных зарядов в природе.
Электрический ток образуется благодаря движению электрических зарядов. Так как магнитных зарядов нет, это объясняет отсутствие магнитного тока. Данное утверждение можно выразить при помощи уравнения:
Определение вихревого поля также выполнимо другим способом.
Вихревое магнитное поле
Векторные поля, вектор которых не равен нулю – это вихревые магнитные поля.
Следуя из теоремы о циркуляции локального вида, которая влияет на вихревой характер магнитного поля:
При отсутствии токов вектор магнитной индукции B → представляется в виде градиента скалярного магнитного потенциала φ m :
Если имеются токи, то данное представление невозможно.
Различие между потенциальными и вихревыми полями
Основными уравнениями магнитного поля постоянных токов считаются выражения вида:
Произведем сравнение с основными уравнениями электростатики:
Магнитное поле считается вихревым при наличии токов. Оно зависит от формы контура и не определяется только положением начала и конца этого контура. Существование однозначной разности потенциалов в магнитном поле исключено. Значение магнитного напряжения по замкнутому контуру не равняется нулю.
Известно значение r o t :
Ответ: Вспомнив теорему о циркуляции, получаем отсутствие токов. В данном случае, представление вектора индукции магнитного поля невозможно в виде магнитного потенциала в области, где проходят токи.
Следует задать нулевой потенциал в точке В :
Учебники
Журнал «Квант»
Общие
Вихревое электрическое поле
Если замкнутый проводник, находящийся в магнитном поле, неподвижен, то объяснить возникновение ЭДС индукции действием силы Лоренца нельзя, так как она действует только на движущиеся заряды.
Известно, что движение зарядов может происходить также под действием электрического поля Следовательно, можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается переменным магнитным полем. К этому выводу впервые пришел Дж. Максвелл.
Электрическое поле, создаваемое переменным магнитным полем, называется индуцированным электрическим полем. Оно создается в любой точке пространства, где имеется переменное магнитное поле, независимо от того, имеется ли там проводящий контур или нет. Контур позволяет лишь обнаружить возникающее электрическое поле. Тем самым Дж. Максвелл обобщил представления М. Фарадея о явлении электромагнитной индукции, показав, что именно в возникновении индуцированного электрического поля, вызванного изменением магнитного поля, состоит физический смысл явления электромагнитной индукции.
Индуцированное электрическое поле отличается от известных электростатического и стационарного электрического полей.
1. Оно вызвано не каким-то распределением зарядов, а переменным магнитным полем.
2. В отличие от линий напряженности электростатического и стационарного электрического полей, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, линии напряженности индуцированного поля — замкнутые линии. Поэтому это поле — вихревое поле.
Исследования показали, что линии индукции магнитного поля и линии напряженности вихревого электрического поля расположены во взаимно перпендикулярных плоскостях. Вихревое электрическое поле связано с наводящим его переменным магнитным полем правилом левого винта:
если острие левого винта поступательно движется по направлению ΔΒ, то поворот головки винта укажет направление линий напряженности индуцированного электрического поля (рис. 1).
3. Индуцированное электрическое поле не является потенциальным. Разность потенциалов между любыми двумя точками проводника, по которому проходит индукционный ток, равна 0. Работа, совершаемая этим полем при перемещении заряда по замкнутой траектории, не равна нулю. ЭДС индукции и есть работа индуцированного электрического поля по перемещению единичного заряда по рассматриваемому замкнутому контуру, т.е. не потенциал, а ЭДС индукции является энергетической характеристикой индуцированного поля.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 350-351.
Научная электронная библиотека
§ 1.1.6. Вихревое электрическое поле
Подобно тому, как движущийся электрический заряд создаёт вихревое магнитное поле, направление вектора индукции которого определяется правилом правого винта (рис. 1.6), переменное магнитное поле создаёт вихревое электрическое поле (рис. 1.13), направление напряжённости которого определяется правилом левого винта:
Если направление увеличения вектора магнитной индукции совпадает с направлением поступательного движения левого винта, то направление вращения шляпки левого винта совпадает с направлением вектора напряжённости электрического поля.
Рис. 1.13. Вихревое электрическое поле. Замкнутый контур напряжённости электрического поля перпендикулярен плоскости рисунка
Возникновение вихревого электрического поля под действием переменного магнитного поля называется явлением электромагнитной индукции (индукцией). Само вихревое электрическое поле, возникшее под действием магнитного поля, называется индуцированным электрическим полем.
На практике, переменное магнитное поле нередко получают изменением силы тока в соленоиде (рис. 1.11). Экспериментально вихревое электрическое поле можно обнаружить с помощью металлического (например, алюминиевого) кольца (проводящего контура) внутрь которого вносится магнит (рис. 1.14).
Рис. 1.14. Иллюстрация возникновения индукционного тока
Как видно из рис. 1.14 вихревое электрическое поле, вызванное движением магнита внутрь кольца, приводит к возникновению электрического тока в проводящем контуре (индукционного тока) и вектору магнитной индукции, направленному из кольца против движения магнита. Кольцо становится подобным магниту, обращённому одноимённым полюсом к приближающемуся магниту. Одноимённые же полюсы отталкиваются. Поэтому кольцо от магнита будет отталкиваться, а стержень, свободно вращающийся вокруг вертикальной оси, поворачиваться. При движении магнита из кольца направление электрического тока в проводящем контуре сменится на противоположное также как и направление вектора магнитной индукции. В результате кольцо к магниту станет притягиваться. При движении внутрь кольца южного полюса магнита поведение стержня с кольцами окажется тем же самым. Электрический ток, возникающий под действием индуцированного электрического поля называется индукционным током. Русским физиком Э.Х. Ленцем впервые было сформулировано общее правило определения направления индукционного тока. Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Важно отметить, что если магнит внести в другое (разрезанное) кольцо, то электрического тока в нём не возникнет и стержень не повернётся.
Работу по перемещению единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой (ЭДС):
где Е – абсолютное значение вектора , замкнутого в форме окружности с радиусом r. В общем случае, для замкнутого контура длиной l произвольной формы
Размерность ЭДС та же, что у потенциала и напряжения (вольты).
При этом установлено, что электродвижущая сила индукции (εi) определяется равенством:
(1.8)
где – скорость изменения магнитного потока Ф через площадь S,
α – угол между вектором магнитной индукции и нормалью (перпендикуляром) к плоскости S. Единицей магнитного потока является вебер, 1 Вб ≡ 1 Tл∙1 м2.
Знак «минус» в равенстве (1.8) означает, что:
индуцированное вихревое электрическое поле совершает работу, противоположную по знаку работе, совершаемой переменным магнитным полем – вектор
индукционного тока противоположен направлению изменения вектора магнитной индукции переменного магнитного поля;
направление вектора напряжённости определяется против правила буравчика, то есть по правилу левого винта.
Если скорость изменения магнитного потока на измеряемом отрезке времени ∆t – постоянна, то равенство (1.8) может быть записано в интегральной форме:
Сила индукционного тока (I), измеряемая в амперах (А), определяется равенством:
где R – сопротивление проводящего контура, [R] = Ом.
Примеры решения задач
Определить ЭДС индукции в контуре проводника, если за три секунды магнитный поток в этом контуре равномерно уменьшился на 0,6 мВб.
Ответ:
Магнитный поток, пронизывающий контур проводника равномерно увеличился с 1,4 мВб до 2 мВб и при этом ЭДС индукции оказалась равной – 1,2 мВ. Найти время изменения магнитного потока и силу индукционного тока, если сопротивление проводника 0,24 Ом.
следовательно
Ответ: ∆t = 0,5 с; I = 5 А
Задачи для самостоятельного решения
1. На сколько изменился магнитный поток за 5 секунд, если в течение этого времени электродвижущая сила равнялась –0,9 В? Увеличивался магнитный поток или уменьшался?
2. Магнитный поток, пронизывающий контур проводника, равномерно уменьшался с 3 Вб до 0,5 Вб, и при этом ЭДС индукции оказалась равной 2 В. Найти время изменения магнитного потока и сопротивление проводящего контура, в котором сила индукционного тока оказалась равной 0,05 А.
1. Сформулируйте правило левого винта.
2. Что такое индукция?
3. Как можно доказать экспериментально возникновение индуцированного электрического поля?
Вихревое поле
Векторное поле назывется соленоидальным, если поток его через любую замкнутую поверхность равен нулю:
Это условие равносильно тому, что равна нулю его дивергенция:
Это условие выполняется тогда и только тогда, когда a имеет векторный потенциал A, то есть
Примеры
См. также
Смотреть что такое «Вихревое поле» в других словарях:
вихревое поле — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN vortex field … Справочник технического переводчика
вихревое поле — sūkurinis laukas statusas T sritis Standartizacija ir metrologija apibrėžtis Sūkuriniams reiškiniams apibūdinti vartojamų dydžių laukas. atitikmenys: angl. circuital field; vortex field vok. Wirbelfeld, n rus. вихревое поле, n pranc. champ… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
вихревое поле — sūkurinis laukas statusas T sritis fizika atitikmenys: angl. circuital field; curl field; vortex field vok. Wirbelfeld, n rus. вихревое поле, n pranc. champ tourbillonnaire, m … Fizikos terminų žodynas
ПОЛЕ — (1) (см. (13)), существующее в виде (см.) и описываемое совокупностью пространственно временных распределений физ. величин, характеризующих рассматриваемые волны; (2) П. вращающееся магнитное ] (3) П. голографическое волновое поле (см. (1)),… … Большая политехническая энциклопедия
Вихревое течение — течение жидкости или газа, в поле которого вихрь скорости (ω) = rotV отличен от нуля. В таком течении частицы жидкости (газа) помимо поступательного движения и деформации совершают вращательное движение с мгновенной угловой скоростью (ω)/2. При… … Энциклопедия техники
вихревое электрическое поле — Электрическое поле, в котором ротор напряженности электрического поля не везде равен нулю. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия EN eddy electric field … Справочник технического переводчика
вихревое течение — Течение, в поле которого вихрь скорости отличен от нуля. [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины виды течений газа EN vortex flow … Справочник технического переводчика
вихревое электрическое поле — 27 вихревое электрическое поле Электрическое поле, в котором ротор напряженности электрического поля не везде равен нулю Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации
вихревое течение — вихревое течение течение жидкости или газа, в поле которого вихрь скорости ω = rotV отличен от нуля. В таком течении частицы жидкости (газа) помимо поступательного движения и деформации совершают вращательное движение с мгновенной угловой… … Энциклопедия «Авиация»
Вихревое электрическое поле: зарождение и свойства
Помимо потенциального кулоновского электрического, существует вихревое поле, в котором имеются замкнутые линии напряженности. Зная общие свойства электрического поля, легче понять природу вихревого. Оно порождается изменяющимся магнитным полем.
Что вызывает индукционный ток проводника, находящегося в неподвижном состоянии? Что такое индукция электрического поля? Ответ на эти вопросы, а также об отличии вихревого от электростатического и стационарного, токах Фуко, ферритах и другом вы узнаете из следующей статьи.
Как меняется магнитный поток
Магнитный поток Ф=BSosɑ может меняться через контур в двух вариантах: при неподвижном контуре в изменяющемся поле и в состоянии движения в поле, неподвижном или изменяющемся. Электродвижущая индукционная сила в обоих случаях будет подчиняться одному закону, но происходить будет по-разному.
Возникновение индукционного тока и силы, движущие заряд
Сначала нужно понять, как возникает индукционный ток. Для этого круглый виток из проволоки кладут в магнитное однородное тело. Если индукция в нем будет увеличиваться, то за ней последует и магнитный поток через поверхность. Вслед за этим возникнет ток. Если индукция магнитного поля станет меняться согласно линейному закону, ток останется постоянным.
Вопрос в том, что за силы начинают двигать заряды в витке. Магнитное поле в катушке на это не способно, потому что оно оказывает влияние только на движущиеся заряды. Но ведь проводник в нем остается неподвижным!
На заряды оказывает действие электрическое поле. Но стационарное и электростатическое образуются зарядами, а индукционный ток — вслед за меняющемся магнитным полем!
Логично было бы предположить, что электроны начинает двигать электрическое поле, порождаясь в результате изменяющегося магнитного поля. Так, физик Масквелл пришел к выводу, что магнитное поле со временем зарождает электрическое.
Электромагнитная индукция
Тогда электромагнитная индукция показывается с новой стороны, где главным свойством предстает порождение электрического поля магнитным. Проводящий контур здесь ничего не меняет. Проводник со свободными электронами становится прибором, позволяя выявить появляющееся электрическое поле, благодаря тому, что оно движется в проводнике. Электромагнитная индукция проводника, находящегося в неподвижном состоянии, заключается не только в возникновении индукционного тока, но и электрического поля, начинающего движение электрических зарядов.
Вихревое электрическое поле, появившееся вслед за магнитным, совсем иного рода, нежели электростатическое. Оно не имеет прямой связи с зарядами, и напряженности на его линиях не начинаются и не заканчиваются. Это замкнутые линии, как у магнитного поля. Поэтому оно и называется вихревое электрическое поле.
Магнитная индукция
Магнитная индукция будет меняться тем быстрее, чем больше напряженность. Правило Ленца гласит: при увеличении магнитной индукции направление вектора напряженности электрополя создает левый винт с направлением другого вектора. То есть при вращении левого винта по направлению с линиями напряженности его поступательное перемещение станет таким же, как и у вектора магнитной индукции.
Если же магнитная индукция будет убывать, то направление вектора напряженности создаст правый винт с направлением другого вектора.
Силовые линии напряженности имеют то же направление, что и индукционный ток. Вихревое электрическое поле действует на заряд с той же силой, что и до него. Однако в данном случае его работа по перемещению заряда является отличной от нуля, как в стационарном электрическом поле. Так как сила и перемещение имеют одно направление, то и работа на всем протяжении пути по замкнутой линии напряженности будет прежней. Работа положительного единичного заряда здесь будет равна электродвижущей силе индукции в проводнике.
Токи индукции в массивных проводниках
В массивных проводниках индукционные токи получают максимальные значения. Это происходит потому, что они имеют малое сопротивление.
Называются такие токи токами Фуко (это французский физик, исследовавший их). Их можно применять для изменения температуры проводников. Именно этот принцип заложен в индукционных печах, к примеру, бытовых СВЧ. Он же применяется для плавления металлов. Электромагнитная индукция используется и в металлических детекторах, расположенных в аэровокзалах, театрах и других общественных местах со скоплением большого количества людей.
Но токи Фуко приводят к потерям энергии для получения тепла. Поэтому сердечники трансформаторов, электрических двигателей, генераторов и других устройств из железа изготавливают не сплошными, а из разных пластин, которые друг от друга изолированы. Пластины должны находиться строго в перпендикулярном положении относительно вектора напряженности, который имеет вихревое электрическое поле. Пластины тогда будут иметь максимальное сопротивление току, а тепла будет выделяться минимальное количество.
Ферриты
Радиоаппаратура функционирует на высочайших частотах, где число достигает миллионов колебаний в секунду. Катушки сердечников здесь не будут эффективны, так как токи Фуко появятся в каждой пластине.
Существуют изоляторы магнитов под названием ферриты. Вихревые токи в них не появятся при перемагничивании. Поэтому потери энергии для тепла сводятся к минимальным. Из них изготавливают сердечники, используемые для высокочастотных трансформаторов, транзисторные антенны и так далее. Их получают из смеси первоначальных веществ, которую прессуют и обрабатывают термическим путем.
Если магнитное поле в ферромагнетике быстро изменяется, это ведет к появлению индукционных токов. Их магнитное поле будет препятствовать изменению магнитного потока в сердечнике. Поэтому поток не будет меняться, а сердечник — перемагничиваться. Вихревые токи в ферритах так малы, что могут быстро перемагничиваться.