Каково значение температуры насыщения при закритических параметрах пара
Водяной пар. Критическая точка. Критические параметры вещества
Процесс получения пара из жидкости может осуществляться испарением и кипением. Испарением называется парообразование, происходящее только со свободной поверхности жидкости и при любой температуре.
Кипением называется бурное парообразование по всей массе жидкости, которое происходит при сообщении жидкости через стенку сосуда определенного количества теплоты. При этом образовавшиеся у стенок сосуда и внутри жидкости пузырьки пара, увеличиваясь в объеме, поднимаются на поверхность жидкости.
Процесс парообразования начинается при достижении жидкостью температуры кипения, которая называется температурой насыщения tн и на протяжении всего процесса остается неизменной. Температура кипения, или температура насыщения, tн зависит от природы вещества и давления, причем с повышением давления tн увеличивается. Давление, соответствующее tн называется давлением насыщения рн.
Насыщенным паром называют пар, который образовался в процессе кипения и находится в динамическом равновесии с жидкостью. Насыщенный пар по своему состоянию бывает сухим насыщенным и влажным насыщенным.
Сухой насыщенный пар представляет собой пар, не содержащий капель жидкости и имеющий температуру насыщения (t=tн) при данном давлении.
Влажный насыщенный пар – это равновесная смесь, состоящая из капель жидкости, находящейся при температуре кипения, и сухого насыщенного пара.
Водяной пар является реальным рабочим телом и может находиться в трёх состояниях: влажного насыщения, сухого насыщения и в перегретом состоянии. Для технических нужд водяной пар получают в паровых котлах (парогенераторах), где специально поддерживается постоянное давление.
Температура, при которой удельная теплота испарения становится раной нулю, называется критической. При критической температуре жидкость и пар не различимы.
Критическая точка — сочетание значений температуры \! T_
Критическая температура фазового перехода — значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Параметры пара
Свойства пара определяются его параметрами, то есть величинами, характеризующими состояние пара (давление, температура, степень сухости, энтальпия, теплосодержание и т. д.). Тепловая энергия подводится к паровой турбине при помощи водяного пара, являющегося носителем тепловой энергии (теплоносителем).
Насыщенный пар
Если нагревать воду в открытом сосуде, то температура ее будет постепенно повышаться, пока не достигнет примерно 100 0 С; после этого дальнейшее повышение температуры прекращается и начинается кипение воды, то есть бурный переход ее в парообразное состояние. Температура воды во время кипения остается одной и той же, так же как температура получающегося над водой пара; она равна точно 100 0 С при нормальном атмосферном давлении, равном давлению ртутного столба 760 мм высотой. Искусственно изменяя давление, можно изменять температуру кипения в очень широких пределах; при увеличении давления температура кипения повышается, при уменьшении давления – понижается.
Так, при давлении 0,02 ата (0,02 от атмосферного давления) вода кипит при 17,2 0 С, а при давлении 10 ата при 179 0 С.
Температура пара над водой, из которой он получается (рис. 1), всегда равна температуре этой воды. Получающийся над водой пар называется насыщенный пар.
Определенной температуре насыщенного пара всегда соответствует определенное давление, и наоборот, определенному давлению всегда соответствует строго определенная температура.
В (таблице 1) приводится зависимость между температурой и давлением насыщенного пара.
Измерив термометром температуру насыщенного пара, можно по этой таблице определить его давление или, измерив давление, определить температуру.
При образовании пара в паровое пространство котла всегда попадают частицы воды, увлекаемые выделяющимся паром; особенно сильное увлажнение пара происходит в современных мощных котлах при работе их с большой нагрузкой. Кроме того, насыщенный пар обладает тем свойством, что при самом незначительном отнятии теплоты часть пара обращается в воду (конденсируется); вода в виде мельчайших капелек удерживается в паре. Таким образом, практически мы всегда имеем смесь сухого пара и воды (конденсата); такой пар называется влажный насыщенный пар. Так же как и у сухого насыщенного пара, температура влажного пара всегда соответствует его давлению.
Состав влажного пара принято выражать в весовых частях пара и воды. Вес сухого пара в 1 кг влажного пара называется или и обозначается буковой «х». Значение «х» обычно дают в сотых долях. Таким образом, если говорят, что у пара «х»=0,95, то это значит, что во влажном паре содержится по весу 95% сухого пара и 5% воды. При «х»=1 насыщенный пар носит название сухого насыщенного пара.
Один килограмм воды при своем испарении дает один килограмм пара; объем получающегося пара зависит от его давления, а следовательно, и от температуры. В противоположность воде, которая по сравнению с газами почти несжимаема, пар может сжиматься и расширяться в очень широких пределах.
Энтальпия пара(теплосодержание) – практически определяется как количество тепла, которое нужно для поучения 1 кг пара данного состояния из 1 кг воды при 0 0 С, если нагрев происходит при постоянном давлении.
Понятно, что при одной и той же температуре энтальпии пара значительно больше, чем энтальпия воды. Для того чтобы нагреть 1 кг воды от 0 до 100 0 С, нужно затратить приблизительно 100 ккал тепла, так как теплоемкость воды равна приблизительно единице. Для того же, чтобы превратить эту воду в сухой насыщенный пар, нужно сообщить воде добавочно значительное количество теплоты, которое расходуется на преодоление внутренних сил сцепления между молекулами воды при переходе ее из жидкого состояния в парообразное и на совершение внешней работы расширения пара от начального объема v / (объем воды) до объема v // (объема пара).
Это добавочное количество теплоты называется теплота парообразования.
Следовательно, энтальпия сухого насыщенного пара будет определяться так:
i // =i / +r, ккал/кг,
Например, при давлении 3 кг/см 3 теплосодержание 1 кг кипящей воды равно 133,4 ккал, а теплота парообразования равна 516,9 ккал/кг; отсюда энтальпия сухого насыщенного пара при давлении 3 кг/см 2 будет:
i // =133,4+516,9=650,3 ккал/кг (табл 2)
в сильной степени зависит от его степени сухости; с уменьшением степени сухости пара его энтальпия уменьшается.
Энтальпия влажного пара равна:
Эту формулу легко уяснить себе на следующем примере: допустим, что давление пара 5 кг/см 2 и степень сухости 0,9 иначе говоря, 1 кг этого пара содержит 0,1 кг воды и 0,9 кг сухого пара. По (табл 2) находим, что энтальпия воды при давлении 5 кг/см 2 равна округленно 152 ккал/кг, а энтальпия сухого пара 656 ккал/кг; так как влажный пар состоит из смеси сухого пара и воды, то энтальпия влажного пара в данном случае будет равна:
Следовательно, энтальпия влажного пара будет в этом случае примерно на 50 ккал/кг меньше, чем сухого насыщенного пара того же давления.
Перегретый пар
Энтальпия перегретого пара
Следовательно, она превышает энтальпию сухого насыщенного пара того же давления на величину, выражающую собой количество теплоты, дополнительно сообщенное пару при перегреве; это количество теплоты равно:
а=ср(t2 – t1), ккал/кг,
где ср – средняя теплоемкость 1 кг пара при постоянном давлении. Ее величина зависит от давления и температуры пара; в (табл. 3) даны значения ср для некоторых температур и давлений;
t1 – температура насыщенного пара; t2 – температура перегретого пара.
Энтальпии перегретого пара для некоторых давлений и температур приведены в (табл. 4).
Перегревая свежий пар, мы сообщаем ему дополнительную теплоты, то есть увеличиваем начальную энтальпию. Это приводит к увеличению использованного теплопадения и повышению экономического к.п.д. установки работающей на перегретом паре. Кроме того, перегретый пар при движении в паропроводах не конденсируется в воду, так как конденсация может начаться только с момента, когда температура перегретого пара понизиться на столько, что он перейдет в насыщенное состояние. Отсутствие конденсации свежего пара особенно важно для паровых турбин, вода, скопившаяся в паропроводе и увлеченная паром в турбину, легко может разрушить лопатки турбины.
Преимущество перегретого пара настолько значительны и выгодность его применения настолько велика, что современные турбинные установки работают почти исключительно перегретым паром.
В настоящее время большинство тепловых электростанций строится с параметрами пара свыше 130 – 150 ата и свыше 565 0 С. В дальнейшем для самых мощных блоков предполагается по мере освоения новых жаростойких сталей повысить параметры до 300 ата и 656 0 С.
При расширении перегретого пара его температура понижается, по достижении температуры насыщения перегретый пар проходит через состояние сухого насыщенного пара и превращается во влажный пар.
Что такое насыщенный и перегретый пар
Термины насыщенный пар и перегретый пар относятся к термодинамическому состоянию воды. Вода и пар являются средами, используемыми для теплообмена в котловых установках благодаря своей доступности и высокой теплоемкости. Особенно эффективно передавать тепло посредством испарения и конденсации воды, которая обладает большой скрытой теплоты испарения.
Насыщенный пар (НП) и перегретый пар (ПП) относятся к определенному давлению среды. Первый НП может существовать во влажном и сухом состоянии, а перегретый ПП – только в сухом, поскольку не может содержать в своем составе частиц воды.
Чаще всего эти понятия применяются в теплоэнергетике, для расчета термодинамических циклов в контуре парового котла и в паровых турбинах, генерирующих электрическую энергию на ТЭЦ, ТЭС, ГРЭС и АЭС.
Что такое насыщенный пар
Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение
В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.
В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.
Здесь начинается процесс парообразования, поскольку температура воды достигает значения точки насыщения при рабочем давлении в котлоагрегате.
Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.
В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.
Давление насыщенного пара
Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.
Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.
Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.
Таблица насыщенного пара
Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.
Дополнительно в таблице могут указываться и другие параметры пара:
Плотность насыщенного пара
Плотность НП определяют по формуле.
D st = 216,49 * P / (Z st * (t + 273))
В этом уравнении символ «Z st» обозначает коэффициент сжимаемости насыщенного пара при абсолютной величине давления насыщенного водяного пара P, бар. Это удобное уравнение действительно для диапазона давления пара от 0,012 до 165 бар, с соответствующим диапазоном температур насыщения от 10 до 360 С.
Влажность насыщенного пара
Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.
Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:
Удельный объем (v) мокрого пара
Удельная энтальпия пара сухостью Х:
Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.
Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.
Перегретый пар
Перегретый пар — это пар с температурой, превышающей его температуру кипения при абсолютном давлении, при котором проводились измерение температуры. Давление и температура перегретого пара не зависят друг от друга, поскольку температура может увеличиваться, в то время как давление остается постоянным.
Процесс перегрева водяного пара на диаграмме Ts представлен на рисунке между состоянием E и кривой насыщенного пара. Чтобы оценить тепловую эффективность цикла, энтальпия должна быть получена из таблиц перегретого пара.
Процесс перегрева — единственный способ увеличить пиковую температуру цикла Ренкина и повысить эффективность без увеличения давления в котле. Это требует добавления в конструкцию котла особого теплообменника, называемого пароперегревателем.
В пароперегревателе дальнейший нагрев при фиксированном давлении приводит к увеличению, как температуры, так и удельного объема. Наибольшее значение перегретого пара заключается в его огромной внутренней энергии, которая может быть использована для кинетической реакции для движения лопастей турбины, создающих вращательное движение вала.
Температура перегретого пара
Характеристики перегретого пара (ПП) аналогичны идеальному газу, но не равны насыщенному пару. Поскольку ПП не обладает зависимостью между температурой и давлением, при конкретном давлении он может вырабатываться в широком температурном диапазоне, что будет зависеть от площади нагрева пароперегревателя.
Перегретый пар отличается от насыщенного такими преимуществами:
Методы регулирования температуры перегретого пара
Довольно часто для технологических процессов, требуется получение перегретого пара строго определенной температуры. Для того чтобы снять ее излишки, обычно используют три метода воздействия на температуру ПП:
В теплоэнергетике в котлах высокого давления наиболее часто применяют первый метод, путем впрыскивания в поток ПП питательной воды или конденсата от турбогенератора. Впрыском насыщенного пара, как правило, регулируют температуру вторичного перегрева пара.
Получение перегретого пара
Пароперегреватель устройство, устанавливаемый в котлоагрегате, вырабатывает перегретый пар с параметрами, превышающими температуру насыщения в барабане котла. Он относится к особо критичным котловым элементам, поскольку из-за высоких температур ПП металл конструкции функционирует в предельно-допустимых условиях.
Пароперегреватели бывают основного типа, работающие в зоне сверхкритического давления и промежуточного типа, которые направляют пар отработанный в турбине для промперегрева.
Кроме того пароперегреватели классифицируются по тепловосприятию на конвективные, установленные в конвективной части котла, радиационные — расположены около топочных экранов и ширмовые — установленные в верхней части топки. По направлению движения потоков ПП и уходящих котловых газов выпускают ПП : прямоточные, противоточные и смешанные.
Использование перегретого пара в технике
В современных паровых турбинах применяют ПП с температурой перегретого пара существенно выше критической (374C).
Перегретый пар используется в турбинах для повышения теплового КПД. Другое использование перегретого пара:
Котлы перегретого пара
В России применяется ГОСТ 3619-76 на паровые котлоагрегаты, в котором установлены параметры насыщенного и перегретого пара, а также паровая производительность и температура воды для питания котла.
Современная российская энергетика использует котлоагрегаты производительностью вырабатывающих 1000/1650/2650/3950 т/ч пара для турбогенераторов соответствующей мощностью 300/500/800/1200 МВт, работающих на сверхкритических параметрах по давлению 25,5 МПа и Тпп=545С.
Энергетические котлы классифицируются по давлению пара — высокого от 10 до 14 МПа и сверхкритического свыше 25,5 МПа. Котлоагрегаты сверхвысокого давления, обычно, выполняют с вторичным перегревом пара.
Паровые котлоагрегаты малой и средней паропроизводительности используются для производства насыщенного и перегретого пара с характеристиками до 3,9 МПа и Т=450 С. Они эксплуатируются на промпредприятиях и в жилищно-коммунальном хозяйстве для производственно-технологических нужд и в системах центрального теплоснабжения.
Типичными представителями агрегатов данной категории являются котел Е (ДЕ) производительностью пара от 1 до 25 т/ч, Е (КЕ) производительностью пара до 25 т/ч с газомазутной горелкой и ДКВР производительностью до 20 т/ч. Их применение – источники тепловой энергии для центрального теплоснабжения с параметрами насыщенного и перегретого пара.
Блог об энергетике
энергетика простыми словами
Водяной пар
Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.
Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.
Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В
Фазовые состояния воды
Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.
Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);
Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;
Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;
Область IV – равновесное состояние твердой и жидкой фаз;
Область V – твердое состояние;
Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой. Эта точка имеет параметры pкр, vкри Ткр, при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Ткр.
Критическая точка К имеет параметры:
Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.
Процесс получения водяного пара из воды
На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v— и T, s-диаграммах.
Начальное состояние жидкой воды, находящейся под давлением p0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а. При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром. Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc. Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным. Это состояние обозначается на диаграмме точкой c.
Рисунок 2. Диаграмма p, v для воды и водяного пара.
Рисунок 3. Диаграмма T, s для воды и водяного пара.
При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d. Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.
Индексация для обозначения величин, относящихся к различным состояниям воды и пара:
Процесс парообразования при более высоком давлении p1 > p0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.
Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v-диаграмме и поднимается вверх на T,s-диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.
Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.
Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v-диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k, называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc (в p, v-диаграмме), соответствует влажному насыщенному пару.
Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc.
На T, s-диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.
Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:
Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds.
На T, s-диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.
Обычно T, s-диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.
По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.











