Какой параметр считается неизменным при дросселировании газов и паров
5.3. Дросселирование
Любой кран, вентиль, задвижка, клапан и прочие местные сопротивления, уменьшающие проходное сечение трубопровода, вызывают дросселирования газа или пара, следовательно падения давления. В большинстве случаев это явление приносит безусловный вред. Но иногда оно является необходим и создается искусственно (регулирование паровых двигателей, в холодильных установках, в приборах для измерения расхода газа и т.д.).
При прохождении газа через отверстие, кинетическая энергия газа и его скорость в узком сечении возрастают, что сопровождается падением температуры и давления.
Газ, протекая через отверстие, приходит в вихревое движение. Часть его кинетической энергии затрачивается на образование этих вихрей и превращается в теплоту. Кроме того, в теплоту превращается и работа, затраченная на преодоление сопротивлений (трение). Вся эта теплота воспринимается газом, в результате чего температура его изменяется (уменьшается или увеличивается).
В отверстие скорость газа увеличивается. За отверстием газ опять течет по полному сечению и скорость его вновь понижается. А давление увеличивается, но до начального значения оно не поднимается; некоторое изменение скорости произойдет в связи с увеличением удельного объема газа от уменьшения давления.
Дросселирование является необратимым процессом, при которм происходит увеличение энтропии и уменьшение работоспособности рабочего тела.
Это равенство показывает, что энтальпия в результате дросселирования не изменяется и справедливо только для сечений, достаточно удаленных от сужения.
Для идеальных газов энтальпия газа является однозначной функцией температуры. Отсюда следует, что при дросселировании идеального газа его температура не изменяется (Т1 = Т2).
При дросселировании реальных газов энтальпия газа остается постоянной, энтропия и объем увеличиваются, давление падает, а температура изменяется (увеличивается, уменьшается или остется неизменной).
Изменение температуры жидкостей и реальных газов при дросселировании называется эффектом Джоуля-Томсона. Для идеального газа эффект Джоуля-Томсона равен нулю. Различают дифференциальный температурный эффект, когда давление и температура изменяются на бесконечно малую величину, и интегральный температурный эффект, при котором давление и температура изменяются на конечную величину.
Интегральный температурный эффект определяется из следующего уравнения:
Для реальных газов D T ¹ 0 и может иметь положительный или отрицательный знак.
Состояние газа, при котором температурный эффект меняет свой знак, называется точкой инверсии, а температура, соответствующая этой точке, называется температурой инверсии – Тинв.
Дросселирование газов и паров
Из опыта известно, что если на пути движения газа или пара в канале встречается препятствие (местное сопротивление), частично загромождающее поперечное сечение потока, то давление за препятствием всегда оказывается меньше, чем перед ним. Этот процесс уменьшения давления, в итоге которого нет ни увеличения кинетической энергии, ни совершения технической работы, называется дросселированием.
Рассмотрим течение рабочего тела сквозь пористую перегородку. Приняв, что дросселирование происходит без теплообмена с окружающей средой, рассмотрим изменение состояния рабочего тела при переходе из сечения I в сечение II.

где h1, h2— значения энтальпии в сечениях I и II. Если скорости потока до и после пористой перегородки достаточно малы, так что 
Итак, при адиабатном дросселировании рабочего тела его энтальпия остается постоянной, давление падает, объем увеличивается.
Поскольку 



Для идеальных газов 

При дросселировании реального газа температура меняется (эффект Джоуля—Томсона). Как показывает опыт, знак изменения температуры (


При дросселировании идеального газа (рисунок а) температура, как уже говорилось, не меняется.
Из h,s-диаграммы видно, что при адиабатном дросселировании кипящей воды она превращается во влажный пар (процесс 3—4), причем чем больше падает давление, тем больше снижается температура пара и увеличивается степень его сухости. При дросселировании пара высокого давления и небольшого перегрева (процесс 5—6) пар сначала переходит в сухой насыщенный, затем во влажный, потом снова в сухой насыщенный и опять в перегретый, причем температура его в итоге также уменьшается.
Дросселирование является типичным неравновесным процессом, в результате которого энтропия рабочего тела возрастает без подвода теплоты. Как и всякий неравновесный процесс, дросселирование приводит к потере располагаемой работы. В этом легко убедиться на примере парового двигателя. Для получения с его помощью технической работы мы располагаем паром с параметрами p1и t1. Давление за двигателем равно р2 (если пар выбрасывается в атмосферу, то р2 = 0,1 МПа).
В идеальном случае расширение пара в двигателе является адиабатным и изображается в h,s-диаграмме вертикальной линией 1-2 между изобарами p1 (в нашем примере 10 МПа) и p2 (0,1 МПа). Совершаемая двигателем техническая работа равна разности энтальпий рабочего тела до и после двигателя: 
Если пар предварительно дросселируется в задвижке, например, до 1МПа, то состояние его перед двигателем характеризуется уже точкой 1’. Расширение пара в двигателе пойдет при этом по прямой 1′-2′. В результате техническая работа двигателя, изображаемая отрезком 1′-2′, уменьшается. Чем сильнее дросселируется пар, тем большая доля располагаемого теплоперепада, изображаемого отрезком 1-2, безвозвратно теряется. При дросселировании до давления р2, равного в нашем случае 0,1 МПа (точка 1’’), пар вовсе теряет возможность совершить работу, ибо до двигателя он имеет такое же давление, как и после него. Дросселирование иногда используют для регулирования (уменьшения) мощности тепловых двигателей. Конечно, такое регулирование неэкономично, так как часть работы безвозвратно теряется, но оно иногда применяется вследствие своей простоты.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Истечение и дросселирование газов и паров
Общие сведения об истечении и дросселировании. Истечение — это процесс непрерывного движения газа или пара по каналу изменяющегося сечения. При истечении газа или пара меняются основные параметры его состояния. Для осуществления процесса истечения в теплотехнике применяют короткие участки трубопроводов—специальные насадки, называющиеся соплами или диффузорами.
Соплом называется канал с таким профилем, при движении по которому пара или газа увеличивается скорость потока и уменьшается давление. В сопле потенциальная энергия превращается в кинетическую.
Диффузором называется канал с таким профилем, при движении по которому газа или пара давление увеличивается, а скорость потока уменьшается, т. е. кинетическая энергия уменьшается. Диффузоры широко применяются в струйных насосах, а сопла — в паровых и газовых турбинах.
Сопла бывают суживающимися и расширяющимися. Суживающееся сопло — это насадка, поперечное сечение которой постепенно уменьшается от входа к выходу (рисунок 4.4, а). Если к выходному концу суживающегося сопла прибавить плавно расширяющуюся часть, получится расширяющееся сопло (рисунок 4.4, б).
Процесс истечения в суживающемся сопле. Пусть через сопло (см. рисунок 4.4, а), во входном сечении которого I—I поддерживаются постоянные параметры газа Р1, υ1, Т1 ), протекает газ в пространство, где также все время поддерживаются постоянными давление Р2, температура Т2 и удельный объем υ2, причем давление на входе P1 больше давления на выходе Р2.
Так как струя газа, протекающего через сопло, неразрывна, то в единицу времени через любое сечение сопла проходит одинаковое количество газа. Следовательно, при проходе газа через малое сечение скорость его увеличивается, а при проходе через большое сечение уменьшается. Давление же будет изменяться обратно изменению скорости, т.е. чем больше скорость, тем меньше давление, и наоборот.
Таким образом, по мере протекания газа через суживающееся сопло его давление быстро падает, а скорость увеличивается, т.е. газ расширяется и удельный объем его растет. В узком выходном сечении давление достигает наименьшего значения и называется критическим (Pкр), скорость же становится наибольшей и тоже называется критической (Cкр). Измерения показали, что для большинства газов и паров критическое давление составляет примеряю половину давления на входе в сопло: Ркр
0,5Р1, т.е. на создание скорости в суживающемся сопле расходуется лишь часть энергии, соответствующая половине располагаемого давления, а вторая часть затрачивается на создание завихренного потока после сопла. Таким образом, вторая часть энергии расходуется бесполезно; ее нельзя, например, направить на лопатки турбины для совершения работы.
Процесс истечения в расширяющемся сопле. Шведский инженер Лаваль предложил сопло, в котором можно получить давление ниже критического. Такое сопло, называется расширяющимся или комбинированным. Узкое сечение II—II называется горлом сопла. При переходе через горло газ или пар имеет критические давление и скорость.
В сопле Лаваля можно получить скорость истечения в 2,5—3 раза больше критической. Это объясняется тем, что вследствие перепада давления Р2
Чтобы струя газа или пара при проходе через расширяющуюся часть сопла не отставала от стенок и не возникали вихревые движения, угол конусности в этом месте должен быть небольшим.
Истечение через диффузоры. До сих пор мы рассматривали истечение через сопла, в которых происходит понижение давления газа и повышение его скорости. Однако процесс может протекать и в обратном направлении. В этом случае скорость газа уменьшается, а давление его повышается, т. е. сопло превращается в диффузор.
Допустим, что происходит процесс истечения газа через сопло Лаваля (рисунок 4.4, а). В сечении 3—3 устанавливаются критические скорость и давление, а в выходном сечении 2—2 — скорость, превышающая критическую, и давление, равное давлению окружающей среды.
Если процесс движения газа по соплу и истечения из него считать обратным, то при протекании в обратном направлении (см. рисунок 4.4, б) сечения 1—1 до сечения 2—2 давление газа понизится, а скорость повысится.
Такие диффузоры для газа и воздуха широко применяются в центробежных компрессорах.
Дросселирование паров и газов. Если в трубопроводе на пути прохождения пара или газа давлением P1 имеется сужение (рисунок 4.5), то давление Р2 по другую сторону сужения становится меньше. Происходящее таким путем понижение давления пара или газа называется дросселированием, или мятием.
Вентили, употребляемые для регулирования мощности паровых машин и турбин, а также дроссельные заслонки для двигателей внутреннего сгорания вызывают дросселирование. Падение давления пара при дросселировании объясняется тем, что часть пара потенциальной энергии пара затрачивается на увеличение скорости его прохода через сужение.
После сужения скорость движения потока уменьшается и становится равной скорости потока до сужения. Однако часть кинетической энергии потока, приобретенной им при истечении через сужение, затрачивается на образование вихрей. Освобождающаяся при этом теплота потока нагревает его.
Таким образом, при дросселировании уменьшается только давление и незначительно понижается температура, скорость же остается без изменения.
Дросселирование рабочего пара в паровых двигателях — явление нежелательное, так как при этом снижается экономичность паросиловых установок. На судах иногда возникает необходимость в получении путем дросселирования небольших количеств пара низкого давления из котлов высокого давления (например, для парового отопления, подогрева топлива). Для этой цели на ответвление паровой магистрали для прохода пара устанавливают специальные клапаны с малым сечением, называемые дроссельными или редукционными. Регулируя натяжение пружины клапана, можно получить необходимое давление за клапаном.
Кроме того, дросселирование находит применение в рабочих процессах, холодильных установок.
Дросселирование паров и газов
Если в трубопроводе на пути движения газа или пара встречается местное сужение проходного сечения, то вследствие сопротивлений, возникающих при таком сужении, давление р2 за местом сужения всегда меньше давления pY перед ним (рис. 8.10). Это явление, при котором пар или газ переходит с высокого давления на низкое без совершения внешней работы и без подвода или отвода теплоты, называется адиабатным дросселированием, или м я т и е м (также редуцированием, или торможением).
Любой кран, вентиль, задвижка, клапан и прочие местные сопротивления, уменьшающие проходное сечение трубопровода, вызывают дросселирование газа или пара и, следовательно, падение давления. Иногда дросселирование специально вводится в цикл работы той или иной машины: например, путем дросселирования пара перед входом в паровые турбины регулируют их мощность. Аналогичный процесс осуществляется и в карбюраторных двигателях внутреннего сгорания, где мощность регулируется изменением положения дроссельной заслонки карбюратора.
Дросселирование газов и паров используют для понижения их давления в специальных редукционных клапанах, широко применяемых в системах тепло- и парогазоснабжения различных предприятий, а также и в холодильной технике для получения низких температур и сжижения газов путем их многократного дросселирования (см. § 10.1).
Физическое представление о падении давления за местным сопротивлением обусловлено диссипацией (рассеянием) энергии потока, расходуемой на преодоление этого местного сопротивления.
При дросселировании потеря давления р1 — р2 тем больше, чем меньше относительная площадь сужения. При отсутствии теплообмена в соответствии с уравнением (8.3) будем иметь
Если изменением скорости движения газа пренебречь, т. е. считать w1 » w2, то i1 = i2. Таким образом, в результате мятия энтальпия газа до суженного сечения и после него имеет одно и то же значение.
Исследование процесса дросселирования показывает также, что при проходе через сужение скорость потока в этом месте возрастает, а давление падает до р¢ в самом узком месте потока, находящемся на небольшом расстоянии за сужением канала. Конечно, полученное приращение кинетической энергии струи можно было бы при наличии диффузора перевести обратно в потенциальную энергию и этим поднять давление до первоначального р1. Однако отсутствие диффузора исключает такой обратный процесс, а большая часть приращения кинетической энергии из-за наличия вихревых движений за суженным сечением переходит в теплоту, которая воспринимается газом (или паром). Последнее же, как известно, связано с увеличением энтропии, и рабочее тело не возвращается в первоначальное состояние, несмотря на равенство скоростей и энтальпий. Все это приводит к тому, что процесс дросселирования, будучи по существу адиабатным, является типичным необратимым процессом.
Из равенства i1 = i2. следует, что для идеальных газов при условии постоянства теплоемкостей в процессе дросселирования температура остается неизменной. Но если t1 — t2, то p2v2 = p1vl, а так как р2 v1 (рис. 8.11).
В Ts-диаграмме явление мятия идеального газа может быть представлено точками 1 и 2, которые лежат на одной горизонтали, так как Т1 = Т2. Считать, что отрезок изотермы 1—2 соответствует процессу дросселирования газа, нельзя, ибо только крайние точки 1 и 2 характеризуют состояние газа как равновесное, а все промежуточные точки не соответствуют действительному процессу, совершающемуся с газом. Поэтому линия 1—2 проведена на рис. 8.11 пунктиром. Действительно, при адиабатном процессе в месте сужения проходного сечения скорость потока возрастает в соответствии с уравнением (8.3) за счет энтальпии, а, значит, температура уменьшается. После этого по мере перехода внешней кинетической энергии в теплоту температура газа повышается, и на некотором удалении от места сужения, где течение потока становится стационарным, температура достигает своего первоначального значения. Таким образом, действительный процесс между точками 1 и 2 протекает при переменных значениях i и t поэтому неправильно определять процесс дросселирования как процесс при i = const и называть его изоэнтальпийным.
Для водяного пара процесс дросселирования удобно исследовать в is-диаграмме (рис. 8.12). Перегретый пар в зависимости от начальных параметров в результате дросселирования может остаться перегретым (процесс 1—2) или сделаться сухим, потом влажным, снова сухим и перегретым (процесс 3—4). Это определяется степенью дросселирования. Влажный пар в зависимости от начального и конечного давления и начальной степени сухости может в результате остаться влажным или сделаться сухим и даже перегретым (процесс 5—6 на рис. 8.12).
Изменение температуры жидкостей и реальных газов при адиабатном дросселировании впервые было установлено опытами ученых Джоуля и Томсона в 1852 г. и называется эффектом Джоуля—Томсона. При этом различают интегральный температурный эффект при дросселировании, когда давление газа изменяется значительно, и дифференциальный эффект, когда уменьшение давления, а следовательно, и изменения температуры бесконечно малы.
Дросселирование газов и паров
Из опыта известно, что если на пути движения газа или пара в канале встречается препятствие (местное сопротивление), частично загромождающее поперечное сечение потока, то давление за препятствием всегда оказывается меньше, чем перед ним. Этот процесс уменьшения давления, в итоге которого нет ни увеличения кинетической энергии, ни совершения технической работы, называется дросселированием.
Рассмотрим течение рабочего тела сквозь пористую перегородку. Приняв, что дросселирование происходит без теплообмена с окружающей средой, рассмотрим изменение состояния рабочего тела при переходе из сечения I в сечение II.

где h1, h2— значения энтальпии в сечениях I и II. Если скорости потока до и после пористой перегородки достаточно малы, так что 
Итак, при адиабатном дросселировании рабочего тела его энтальпия остается постоянной, давление падает, объем увеличивается.
Поскольку 



Для идеальных газов 

При дросселировании реального газа температура меняется (эффект Джоуля—Томсона). Как показывает опыт, знак изменения температуры ( 

Если пар предварительно дросселируется в задвижке, например, до 1МПа, то состояние его перед двигателем характеризуется уже точкой 1’. Расширение пара в двигателе пойдет при этом по прямой 1′-2′. В результате техническая работа двигателя, изображаемая отрезком 1′-2′, уменьшается. Чем сильнее дросселируется пар, тем большая доля располагаемого теплоперепада, изображаемого отрезком 1-2, безвозвратно теряется. При дросселировании до давления р2, равного в нашем случае 0,1 МПа (точка 1’’), пар вовсе теряет возможность совершить работу, ибо до двигателя он имеет такое же давление, как и после него. Дросселирование иногда используют для регулирования (уменьшения) мощности тепловых двигателей. Конечно, такое регулирование неэкономично, так как часть работы безвозвратно теряется, но оно иногда применяется вследствие своей простоты.
Дата добавления: 2015-02-16 ; просмотров: 861 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ











