На гладком горизонтальном полу находится длинная доска по доске под действием
1. На всю систему «пуля + брусок + доска» по горизонтали не действуют внешние силы, поэтому справедлив закон сохранения проекции импульса по этому направлению: где V — скорость движения системы после остановки бруска. Таким образом,
2. В начальном состоянии механическая энергия системы равна кинетической энергии пули а в конечном — кинетической энергии системы
3. По закону изменения механической энергии разность этих кинетических энергий выделяется в виде теплоты:
Поэтому
Ответ:
Критерии оценивания выполнения задания
Баллы
Приведено полное решение, включающее следующие элементы:
I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом;
II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);
III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допуcкается решение «по частям» с промежуточными вычислениями);
IV) представлен правильный ответ с указанием единиц измерения искомой величины
3
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков.
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.).
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.
Отсутствует пункт IV, или в нём допущена ошибка
2
Представлены записи, соответствующие одному из следующих случаев.
Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.
В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.
На гладком горизонтальном полу находится длинная доска по доске под действием
С2-1. На космическом аппарате, находящемся вдали от Земли, начал работать реактивный двигатель. Из сопла ракеты ежесекундно выбрасывается 2 кг газа (Δm/Δt= 2 кг/с) со скоростью v = 500 м/с. Исходная масса аппарата М = 500 кг. Какую скорость приобретет аппарат, пройдя расстояние S = 36 м? Начальную скорость аппарата принять равной нулю. Изменением массы аппарата за время движения пренебречь.
С2-2.На краю стола высотой h = 1,25 м лежит пластилиновый шарик массой m = 100 г. На него со стороны стола налетает по горизонтали другой пластилиновый шарик, имеющий скорость υ = 0,9 м/с. Какой должна быть масса второго шарика, чтобы точка приземления шариков на пол была дальше от стола, чем заданное расстояние L = 0,3 м? (Удар считать центральным.)
С2-3. На гладкой горизонтальной плоскости покоится длинная доска массой М = 2 кг. На доске лежит шайба массой m= 0,5 кг. В начальный момент времени шайбе щелчком сообщили скорость v0= 2 м/с. Коэффициент трения между шайбой и доской μ = 0,2. Сколько времени потребуется для того, чтобы шайба перестала скользить по доске?
С2-4. На гладкой горизонтальной плоскости находится длинная доска массой M = 2 кг. По доске скользит шайба массой m = 0,5 кг. Коэффициент трения между шайбой и доской μ = 0,2. В начальный момент времени скорость шайбы v0= 2 м/с, а доска покоится. Сколько времени потребуется для того, чтобы шайба перестала скользить по доске?
С2.5. На гладкой горизонтальной плоскости находится длинная доска массой М = 2 кг. По доске скользит шайба массой m. Коэффициент трения между шайбой и доской μ = 0,2. В начальный момент времени скорость шайбы v0= 2 м/с, а доска покоится. В момент t = 0,8 с шайба перестает скользить по доске. Чему равна масса шайбы m?
А22-1.Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в неподвижно висящий на нити груз массой 81г, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова длина нити?
А22-2.Летящая горизонтально пластилиновая пуля массой 9 г попадает в неподвижно висящий на нити длиной 40 см груз массой 81 г, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом α = 60°. Какова скорость пули перед попаданием в груз?
А22-3.Перед ударом два пластилиновых шарика движутся взаимно перпендикулярно с одинаковыми импульсами 1 кг•м/с. Массы шариков 100 г и 150 г. После столкновения слипшиеся шарики движутся поступательно. Их общая кинетическая энергия после соударения равна
С1-1. После толчка льдинка закатилась в яму с гладкими стенками, в которой она может двигаться практически без трения. На рисунке приведен график зависимости энергии взаимодействия льдинки с Землей от её координаты в яме. В некоторый момент времени льдинка находилась в точке А с координатой х = 10 см и двигалась влево, имея кинетическую энергию, равную 2 Дж. Сможет ли льдинка выскользнуть из ямы? Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.
С1-1. После толчка льдинка закатилась в яму с гладкими стенками, в которой она может двигаться практически без трения. На рисунке приведен график зависимости энергии взаимодействия льдинки с Землей от её координаты в яме. В некоторый момент времени льдинка находилась в точке А с координатой х = 10 см и двигалась влево, имея кинетическую энергию, равную 2 Дж. Сможет ли льдинка выскользнуть из ямы? Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.
С1-2. После толчка льдинка закатилась в яму с гладкими стенками, в которой она может двигаться практически без трения. На рисунке приведен график зависимости энергии взаимодействия льдинки с Землей от ее координаты в яме. В некоторый момент времени льдинка находилась в точке А с координатой х = 50 см и двигалась влево, имея кинетическую энергию, равную 2 Дж. Сможет ли льдинка выскользнуть из ямы? Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.
С2-3. К одному концу лёгкой пружины жёсткостью k = 100 Н/м прикреплён массивный груз, лежащий на горизонтальной плоскости, другой конец пружины закреплён неподвижно (см. рисунок). Коэффициент трения груза по плоскости μ = 0,2. Груз смещают по горизонтали, растягивая пружину, затем отпускают с начальной скоростью, равной нулю. Груз движется в одном направлении и затем останавливается в положении, в котором пружина уже сжата. Максимальное растяжение пружины, при котором груз движется таким образом, равно d = 15 см. Найдите массу m груза.
С2-3. Пуля летит горизонтально со скоростью v0= 150 м/с, пробивает стоящий на горизонтальной поверхности льда брусок и продолжает движение в прежнем направлении со скоростью V0/3. Масса бруска в 10 раз больше массы пули. Коэффициент трения скольжения между бруском и льдом μ = 0,1. На какое расстояние S сместится брусок к моменту, когда его скорость уменьшится на 10%?
С2-4.Пуля летит горизонтально со скоростью v0= 160 м/с, пробивает стоящую на горизонтальной шероховатой поверхности коробку и продолжает движение в прежнем направлении со скоростью V0/4. Масса коробки в 12 раз больше массы пули. Коэффициент трения скольжения между коробкой и поверхностью μ= 0,3. На какое расстояние S переместится коробка к моменту, когда её скорость уменьшится на 20%?
С2-5. Брусок массой m1= 500 г соскальзывает по наклонной плоскости с высоты h и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой m2 = 300 г. В результате абсолютно неупругого соударения общая кинетическая энергия брусков становится равной 2,5 Дж. Определите высоту наклонной плоскости h. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.
С2-6. Брусок массой m1= 500 г соскальзывает по наклонной плоскости с высоты h = 0,8 м и, двигаясь по горизонтальной поверхности, сталкивается с неподвижным бруском массой m2= 300 г. Считая столкновение абсолютно неупругим, определите общую кинетическую энергию брусков после столкновения. Трением при движении пренебречь. Считать, что наклонная плоскость плавно переходит в горизонтальную.
С2.7. Брусок массой m1= 500 г соскальзывает по наклонной плоскости высотой h = 0,8 м и сталкивается с неподвижным бруском массой m2= 300 г, лежащим на горизонтальной поверхности. Считая столкновение упругим, определите кинетическую энергию первого бруска после столкновения. Трением при движении пренебречь.
С2.9. Брусок массой m скользит по горизонтальной поверхности стола и нагоняет брусок массой 6m, скользящий по столу в том же направлении. В результате неупругого соударения бруски слипаются. Их скорости перед ударом были v0= 7 м/с и v0/3. Коэффициент трения скольжения между брусками и столом μ = 0,5. На какое расстояние переместятся слипшиеся бруски к моменту, когда их скорость станет 2v0/7?
С2-11. Шайба массой m = 100 г начинает движение по желобу АВ из точки А из состояния покоя. Точка А расположена выше точки В на высоте Н = 6 м. В процессе движения по желобу механическая энергия шайбы из-за трения уменьшается на ΔE = 2 Дж. В точке В шайба вылетает из желоба поз углом α = 150 к горизонту и падает на землю в точке D. находящейся на одной горизонтали с точкой В (см. рисунок). Найдите BD. Сопротивлением воздуха пренебречь.
С2-12. Небольшая шайба после удара скользит вверх по наклонной плоскости из точки А (см. рисунок). В точке В наклонная плоскость без излома переходит в наружную поверхность горизонтальной трубы радиусом R. Если в точке А скорость шайбы превосходит v0= 4 м/с, то в точке В шайба отрывается от опоры. Длина наклонной плоскости АВ = L = 1 м, угол α = 30°. Коэффициент трения между наклонной плоскостью и шайбой μ = 0,2. Найдите внешний радиус трубы R.
С2.13. Небольшая шайба после толчка приобретает скорость v = 2 м/с и скользит по внутренней поверхности гладкого закреплённого кольца радиусом R = 0,14 м. На какой высоте h шайба отрывается от кольца и начинает свободно падать?
С2.14.Система из грузов m и M и связывающей их лёгкой нерастяжимой нити в начальный момент покоится в вертикальной плоскости, проходящей через центр закреплённой сферы. Груз m находится в точке А на вершине сферы (см. рисунок). В ходе возникшего движения груз m отрывается от поверхности сферы, пройдя по ней дугу 30°. Найдите массу М, если m = 100 г. Размеры груза m ничтожно малы по сравнению с радиусом сферы. Трением пренебречь. Сделайте схематический рисунок с указанием сил, действующих на грузы.
С2.15.Небольшая шайба после толчка приобретает скорость v = 2 м/с и скользит по внутренней поверхности гладкого закреплённого кольца радиусом R = 0,14 м. На какой высоте h шайба отрывается от кольца и начинает свободно падать?
С2-16. Кусок пластилина сталкивается с покоящимся на горизонтальной поверхности стола бруском и прилипает к нему. Скорость пластилина перед ударом равна vпл= 5 м/с. Масса бруска в 4 раза больше массы пластилина. Коэффициент трения скольжения между бруском и столом μ = 0,25. На какое расстояние переместятся слипшиеся брусок с пластилином к моменту, когда их скорость уменьшится на 40%?
С2.17. Кусок пластилина сталкивается со скользящим навстречу по горизонтальной поверхности стола бруском и прилипает к нему. Скорости пластилина и бруска перед ударом направлены противоположно и равны vпл= 15 м/с и vбр= 5 м/с. Масса бруска в 4 раза больше массы пластилина. Коэффициент трения скольжения между бруском и столом μ = 0,17. На какое расстояние переместятся слипшиеся брусок с пластилином к моменту, когда их скорость уменьшится на 30%?
С2-18. Кусок пластилина сталкивается со скользящим навстречу по горизонтальной поверхности стола бруском и прилипает к нему. Скорости пластилина и бруска перед ударом направлены взаимно противоположно и равны vпл=15 м/с и vбр= 5 м/с. Масса бруска в 4 раза больше массы пластилина. Коэффициент трения скольжения между бруском и столом μ = 0,17. На какое расстояние переместятся слипшиеся брусок с пластилином к моменту, когда их скорость уменьшится в 2 раза?
С2-19. Кусок пластилина сталкивается со скользящим навстречу по горизонтальной поверхности стола бруском и прилипает к нему. Скорости пластилина и бруска перед ударом направлены взаимно противоположно и равны vпл= 15 м/с и vбр= 5 м/с. Масса бруска в 4 раза больше массы пластилина. К моменту, когда скорость слипшихся бруска и пластилина уменьшилась в 2 раза, они переместились на 0,22 м. Определите коэффициент трения μ бруска о поверхность стола.
С2-20. Пуля летит горизонтально со скоростью v0= 150 м/с, пробивает стоящий на горизонтальной поверхности льда брусок и продолжает движение в прежнем направлении со скоростью v0/3. Масса бруска в 10 раз больше массы пули. Коэффициент трения скольжения между бруском и льдом μ = 0,1. На какое расстояние S сместится брусок к моменту, когда его скорость уменьшится на 10%?
С2.21. Пуля, летящая горизонтально со скоростью vo= 120 м/с, пробивает лежащую на горизонтальной поверхности стола коробку и продолжает движение в прежнем направлении, потеряв 80% скорости. Масса коробки в 16 раз больше массы пули. Коэффициент трения скольжения между коробкой и столом μ = 0,5. На какое расстояние переместится коробка к моменту, когда её скорость уменьшится вдвое?
С2.24. Из пружинного пистолета выстрелили вертикально вниз в мишень, находящуюся на расстоянии 2 м от него. Совершив работу 0,12 Дж, пуля застряла в мишени. Какова масса пули, если пружина была сжата перед выстрелом на 2 см, а ее жесткость 100 Н/м?
С2.25. Каково среднее давление пороховых газов в стволе орудия, если скорость вылетевшего из него снаряда равна 1,5 км/с? Длина ствола 3 м, его диаметр 45 мм, масса снаряда 2 кг. (Трение пренебрежимо мало.)
С2-26. При выполнении трюка «Летающий велосипедист» гонщик движется по трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты Н (см. рисунок). На краю трамплина скорость гонщика направлена под таким углом к горизонту, что дальность его полёта максимальна. Пролетев по воздуху, гонщик приземляется на горизонтальный стол, находящийся на той же высоте, что и край трамплина. Какова высота полёта h на этом трамплине? Сопротивлением воздуха и трением пренебречь.
С2-27. При выполнении трюка «Летающий велосипедист» гонщик движется по трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты Н (см. рисунок). На краю трамплина скорость гонщика направлена под углом α = 30° к горизонту. Пролетев по воздуху, гонщик приземляется на горизонтальный стол, находящийся на той же высоте, что и край трамплина. Какова дальность полета L на этом трамплине? Сопротивлением воздуха и трением пренебречь.
С2-28. При выполнении трюка «Летающий велосипедист» гонщик движется по гладкому трамплину под действием силы тяжести, начиная движение из состояния покоя с высоты Н (см. рисунок). На краю трамплина скорость гонщика направлена под углом α = 60° к горизонту. Пролетев по воздуху, он приземлился на горизонтальный стол на той же высоте, что и край трамплина. Каково время полета?
С2-29. Шарик скользит без трения по наклонному желобу, а затем движется по «мертвой петле» радиуса R. С какой силой давит шарик на желоб в верхней точке петли, если масса шарика 100 г, а высота, с которой его отпускают, равна 4 R считая от нижней точки петли?