НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠœΠ°ΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π·.

БостояниС Π³Π°Π·Π° (Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ Тидкости ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описано ΠΈ Π±Π΅Π· рассмотрСния молСкулярного строСния вСщСства. Π­Ρ‚ΠΎ Π΄Π΅Π»Π°ΡŽΡ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ макроскопичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ опрСдСляСт состояниС систСмы. Π’Π°ΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ состояния (ΠΈΠ»ΠΈ тСрмоди­намичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ). ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ состояния любой систСмы ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΅Π΅ объСм, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°. Если Π² ΠΊΠ°ΠΊΠΎΠΌ-Π»ΠΈΠ±ΠΎ процСссС измСняСтся хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² состояния систСмы, Ρ‚ΠΎ ΠΈ само состояниС систСмы становится Π΄Ρ€ΡƒΠ³ΠΈΠΌ.

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ состояниС макроскопичСских Ρ‚Π΅Π» Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ строСния Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ макроскопичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ.

Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π· – это модСль Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π°Π·Π°, которая ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ свойствами:

1. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»Ρ‹ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ со срСдним расстояниСм ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

2. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π²Π΅Π΄ΡƒΡ‚ сСбя ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ малСньким Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌ ΡˆΠ°Ρ€ΠΈΠΊΠ°ΠΌ: ΠΎΠ½ΠΈ ΡƒΠΏΡ€ΡƒΠ³ΠΎ ΡΡ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ со стСнками сосуда, Π½ΠΈΠΊΠ°ΠΊΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Π½Π΅Ρ‚.

3. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ находятся Π² Π½Π΅ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π°ΡŽΡ‰Π΅ΠΌΡΡ хаотичСском Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.

ВсС Π³Π°Π·Ρ‹ ΠΏΡ€ΠΈ Π½Π΅ слишком высоких давлСниях ΠΈ ΠΏΡ€ΠΈ Π½Π΅ слишком Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… Π±Π»ΠΈΠ·ΠΊΠΈ ΠΏΠΎ своим свойствам ΠΊ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½ΠΎΠΌΡƒ Π³Π°Π·Ρƒ. ΠŸΡ€ΠΈ высоких давлСниях ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π³Π°Π·Π° Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ ΡΠ±Π»ΠΈΠΆΠ°Β­ΡŽΡ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°Ρ‚ΡŒ ΠΈΡ… собствСнными Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ нСльзя. ΠŸΡ€ΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ кинСтичСская энСргия ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ ΠΈ становится сравнимой с ΠΈΡ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСр­гиСй, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°Ρ‚ΡŒ ΠΏΠΎΒ­Ρ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСргиСй нСльзя.

ΠŸΡ€ΠΈ высоких давлСниях ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Β­Ρ‚ΡƒΡ€Π°Ρ… Π³Π°Π· Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ. Π’Π°ΠΊΠΎΠΉ Π³Π°Π· Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ. (ПовСдСниС Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π°Π·Π° описываСтся Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ ΠΎΡ‚ Π·Π°ΠΊΠΎΠ½ΠΎΠ² идСального Π³Π°Π·Π°.)

2. Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°. ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ МКВ Π³Π°Π·Π°.

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° опрСдСляСтся столкновСниСм ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° со стСнками сосуда.

Π’ БИ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ давлСния ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ 1 Па.

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ 1 ΠΌ 2 дСйствуСт сила давлСния Π² 1 Н, называСтся ПаскалСм.

Одной ΠΈΠ· основных Π·Π°Π΄Π°Ρ‡ молСкулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π³Π°Π·Π° являСтся установлСниС количСствСнных ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ макроскопичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΌΠΈ состояниС Π³Π°Π·Π° (Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ), ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΒ­Ρ‰ΠΈΠΌΠΈ хаотичСскоС Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° (ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», ΠΈΡ… кинСтичСской энСргиСй). Одним ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Β­Π½ΠΈΠΉ являСтся Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ идСального Π³Π°Π·Π° ΠΈ срСднСй кинСтичСской энСргиСй ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Π­Ρ‚Ρƒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ основным ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ молС­кулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ идСального Π³Π°Π·Π°:

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°ΠΈΠ»ΠΈ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π³Π΄Π΅ Ρ€ β€” Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°; n β€” концСнтрация ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° (число Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π² Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΌ объСмС): m0 β€” масса ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π³Π°Π·Π°, НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°β€” срСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Π³Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ газа—срСдняя квадратичная энСргия ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΒ­Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» идСального Π³Π°Π·Π°.

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ идСального Π³Π°Π·Π° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ срСднСй кинСтичСской энСргии ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ».

Π­Ρ‚ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌ большС, Ρ‡Π΅ΠΌ большС срСдняя кинСтичСская энСргия ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ».

Π‘Ρ€Π΅Π΄Π½Π΅ΠΉ квадратичСской ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ€Π°Π²Β­Π½ΡƒΡŽ ΠΊΠΎΡ€Π½ΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΈΠ· срСднСго арифмСтичСского значСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² скоростСй N ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π°:

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π‘Ρ€Π΅Π΄Π½Π΅ΠΉ кинСтичСской энСргиСй ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» идСального Π³Π°Π·Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π° НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ основного уравнСния МКВ ΠΈΠΌΠ΅Π΅ΠΌ:

Из этой Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ срСдняя кинСтичСская энСргия ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° зависит ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Π­Ρ‚Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Π½Π΅ зависит ΠΎΡ‚ Π΅Π³ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹, Π° опрСдСляСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ Π³Π°Π·Π°.

ЧислСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ срСднСй ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ скорости ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, Ρ‚.ΠΊ. НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, Ρ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠŸΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… давлСниях ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΒ­Ρ€Π°Ρ… концСнтрация ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» всСх Π³Π°Π·ΠΎΠ² ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°. Π’ частности, ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ NΠ» Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ числом Π›ΠΎΡˆΠΌΠΈΠ΄Ρ‚Π°, ΠΎΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ количСству ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» идСального Π³Π°Π·Π°, содСрТащихся Π² 1 ΠΌ 3 Π³Π°Π·Π° ΠΏΡ€ΠΈ Π½ΠΎΡ€Β­ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях.

6.Π—Π°ΠΊΡ€Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°:

А) Вопросы для Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ опроса:

1. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹? КакиС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ относятся ΠΊ ΠΈΡ… числу? Π˜Π·ΠΌΠ΅Π½ΡΠ΅Ρ‚ΡΡ Π»ΠΈ состояниС систСмы ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°?

2. Какой Π³Π°Π· Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ? Π§Ρ‚ΠΎ являСтся модСлью идСального Π³Π°Π·Π°?

3. ΠŸΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях Π³Π°Π· ΠΏΠΎ своим свойствам Π±Π»ΠΈΠ·ΠΎΠΊ ΠΊ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½ΠΎΠΌΡƒ? ΠŸΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях ΠΈ ΠΏΠΎΡ‡Π΅ΠΌΡƒ Π³Π°Π· Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ?

4. Π§Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹ΠΌ Π½ΡƒΠ»Π΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹? Каков физичСский смысл этого понятия с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния молСкулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ?

5. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ идСального Π³Π°Β­Π·Π° Π½Π° стСнки ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ ΠΏΡ€ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Β­Π½ΠΎΠΌ Π½ΡƒΠ»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹?

6. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΒ­Ρ€Π° Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ нуля Π² градусах ЦСльсия. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ ΠΎΡ…Π»Π°Π΄ΠΈΡ‚ΡŒ Ρ‚Π΅Β­Π»ΠΎ Π΄ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠ³ΠΎ нуля?

7. Каково соврСмСнноС прСдставлСниС ΠΎΠ± энСргии ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΏΡ€ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΌ Π½ΡƒΠ»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹?

8. ΠžΠ±ΡŠΡΡΠ½ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ построСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… шкал ЦСльсия ΠΈ КСльвина. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ собой эти ΡˆΠΊΠ°Π»Ρ‹ ΠΈ установитС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ значСниями Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Β­Π½ΠΎΠΉ ΠΏΠΎ шкалам КСльвина ΠΈ ЦСльсия.

Π‘) РСшСниС количСствСнных Π·Π°Π΄Π°Ρ‡:

Π—Π°Π΄Π°Ρ‡Π° β„–1.

Найти ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» кислорода, Ссли Π΅Π³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ 0,2 МПа, Π° срСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ€Π°Π²Π½Π° 700 ΠΌ/с.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°Ο…=700 ΠΌ/с

Π—Π°Π΄Π°Ρ‡Π° β„–2.

Π—Π°Π΄Π°Ρ‡Π° β„–3.

Π—Π°Π΄Π°Ρ‡Π° β„–4.

Бколько ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» содСрТится Π² 2 ΠΌ 3 Π³Π°Π·Π° ΠΏΡ€ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ 150 кПа ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 27 ΒΊΠ‘.(7,2Β·10 25 )

Π—Π°Π΄Π°Ρ‡Π° β„–5.

На сколько ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ² увСличиваСтся срСдняя кинСтичСская энСргия ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π΅Π³ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΡ‚ 7 Π΄ΠΎ 35 ΒΊΠ‘? ( На 10%)

Π—Π°Π΄Π°Ρ‡Π° β„–6.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ число n ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», содСрТащихся Π² объСмС V = 1 ΠΌΠΌ 3 Π²ΠΎΠ΄Ρ‹ ΠΈ массу m0 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π²ΠΎΠ΄Ρ‹.

Число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» n, содСрТащихся Π² Ρ‚Π΅Π»Π΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ массы m:

m0 подсчитываСм ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3) НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–7.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» содСрТащихся Π² 10 Π³ Π°Π·ΠΎΡ‚Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π—Π°Π΄Π°Ρ‡Π° β„–8.

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΏΡ€ΠΈ 0 0 Π‘.

Π‘Ρ€Π΅Π΄Π½ΡŽΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ рассчитаСм ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (17): НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–9.

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΡƒΡŽ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ ΠΈ ΡΡ€Π΅Π΄Π½ΡŽΡŽ Π°Ρ€ΠΈΡ„ΠΌΠ΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ скорости ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π°Π·ΠΎΡ‚Π° ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 420 К.

ΠŸΡ€ΠΈ расчСтах ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (18), (17) ΠΈ (19).

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–10.

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° срСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 27 0 Π‘?

Π‘Ρ€Π΅Π΄Π½ΡŽΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π²ΠΎΠ·Π΄ΡƒΡ…Π° вычислим ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (17).

R = 8,31 НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–11.

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π³Π°Π·Π° ΠΏΡ€ΠΈ 27 0 Π‘.

Для расчСта ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (5).

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–12.

БрСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π³Π°Π·Π° = 450 ΠΌ/с. Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Ρ€ = 50 кПа. Найти ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ r Π³Π°Π·Π° ΠΏΡ€ΠΈ этих условиях.

ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ молСкулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ запишСм Π² Π²ΠΈΠ΄Π΅:

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π’Π°ΠΊ ΠΊΠ°ΠΊ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°(масса Π³Π°Π·Π°); Π° НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°(ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Π³Π°Π·Π°), Ρ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°ΠΈΠ»ΠΈ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠžΡ‚ΠΊΡƒΠ΄Π° НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

РасчСт Π² Π‘ΠΈ: Ρ€ = 5010 3 Па; = 450 ΠΌ/с.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–13.

ЭнСргия ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π°Π·ΠΎΡ‚Π°, находящСгося Π² Π±Π°Π»Π»ΠΎΠ½Π΅ объСмом V = 20Π», 5 ΠΊΠ”ΠΆ, Π° срСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» = 210 3 ΠΌ/с. Найти массу m Π°Π·ΠΎΡ‚Π° Π² Π±Π°Π»Π»ΠΎΠ½Π΅ ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ€ ΠΏΠΎΠ΄ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΎΠ½ находится.

ЭнСргия ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π°Π·ΠΎΡ‚Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π° ΠΊΠ°ΠΊ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, ΠΎΡ‚ΠΊΡƒΠ΄Π° НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°(А). Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (А) Π·Π°ΠΌΠ΅Π½ΠΈΠΌ m. НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–14.

Для расчСта ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (16) НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°(16). Π’Π°ΠΊ ΠΊΠ°ΠΊ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°ΠΈ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, Ρ‚ΠΎ (послС Π·Π°ΠΌΠ΅Π½Ρ‹ m) ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρƒ (19) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°(19). Для этого Π·Π°ΠΌΠ΅Π½ΠΈΠΌ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°ΠΈΠ»ΠΈ, зная, Ρ‡Ρ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Аналогично Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (18) Π·Π°ΠΌΠ΅Π½ΠΈΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°; НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π—Π°Π΄Π°Ρ‡Π° β„–15. БрСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π³Π°Π·Π° ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях = 461 ΠΌ/с. КакоС число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» содСрТит Π΅Π΄ΠΈΠ½ΠΈΡ†Π° массы этого Π³Π°Π·Π°?

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π’Π°ΠΊ ΠΊΠ°ΠΊ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, Ρ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. НайдСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ m0 подставим Π² равСнство (Π’). ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ газаНазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ газаНазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π· прСдставляСт собой ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΡƒΡŽ модСль Π³Π°Π·Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°ΡŽΡ‚ энСргиСй взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ частицами. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ссли Π³Π°Π· достаточно Ρ€Π°Π·Ρ€Π΅ΠΆΠ΅Π½, столкновСния ΠΌΠ΅ΠΆΠ΄Ρƒ Π΅Π³ΠΎ частицами происходят Ρ€Π΅Π΄ΠΊΠΎ, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ скорости ΠΈΡ… Π²Π΅Π»ΠΈΠΊΠΈ, поэтому кинСтичСская энСргия частиц Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ большС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ энСргии ΠΈΡ… взаимодСйствия.

ΠœΠ°ΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ – Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ состояниС тСрмодинамичСской систСмы Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° молСкулярного строСния Ρ‚Π΅Π»

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² МКВ образуСтся ΠΈΠ·-Π·Π° ΡƒΠ΄Π°Ρ€ΠΎΠ² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΎ стСнки сосуда ΠΏΡ€ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π· – модСль Π³Π°Π·Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΈ Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ силы взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

Π‘Ρ€Π΅Π΄Π½Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° скорости ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ многочислСнных соударСний ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ со стСнками Π² сосудС, содСрТащСм большоС число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», устанавливаСтся Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ статистичСскоС распрСдСлСниС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΏΠΎ скоростям. ΠŸΡ€ΠΈ этом всС направлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² скоростСй ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π²Π½ΠΎΠΏΡ€Π°Π²Π½Ρ‹ΠΌΠΈ (равновСроятными), Π° ΠΌΠΎΠ΄ΡƒΠ»ΠΈ скоростСй ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси ΠΏΠΎΠ΄Ρ‡ΠΈΠ½ΡΡŽΡ‚ΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ закономСрностям. РаспрСдСлСниС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ скоростСй называСтся распрСдСлСниСм МаксвСлла. Π”ΠΆ. МаксвСлл Π² 1860 Π³. Π²Ρ‹Π²Π΅Π» Π·Π°ΠΊΠΎΠ½ распрСдСлСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° ΠΏΠΎ скоростям, исходя ΠΈΠ· основных ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ молСкулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ. Π—Π°ΠΊΠΎΠ½ МаксвСлла ΠΎ распрСдСлСнии ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» идСального Π³Π°Π·Π° ΠΏΠΎ скоростям основан Π½Π° прСдполоТСниях, Ρ‡Ρ‚ΠΎ Π³Π°Π· состоит ΠΈΠ· большого числа N ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», Π΅Π³ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° постоянна, Π° ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‚ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΅ хаотичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠŸΡ€ΠΈ этом Π½Π° Π³Π°Π· Π½Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ силовыС поля.

Π‘ ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ максимум ΠΊΡ€ΠΈΠ²ΠΎΠΉ распрСдСлСния смСщаСтся Π² сторону Π±ΠΎΠ»ΡŒΡˆΠΈΡ… скоростСй, ΠΏΡ€ΠΈ этом Ο…Π² ΠΈ Ο…ΠΊΠ² ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

БрСдняя квадратичная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» β€” срСднСС квадратичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ скоростСй всСх ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» рассматриваСмого количСства Π³Π°Π·Π°.

ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ МКВ для идСального Π³Π°Π·Π°

ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ МКВ связываСт макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ состояния Π³Π°Π·Π° с характСристиками двиТСния Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ». Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Π½Π° стСнки сосуда Π΅ΡΡ‚ΡŒ слСдствиС столкновСний ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π° со стСнками. БрСдняя сила, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π°Ρ ΠΎΡ‚ совокупного дСйствия всСх ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π³Π°Π·Π°, опрСдСляСт Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°.

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ сСбС сосуд Π² Π²ΠΈΠ΄Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ содСрТится ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π·. Вычислим Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈΠ· стСнок сосуда ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ S.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

N = 1/6 nV = 1/6 nSvΞ”t.

Π—Π° врСмя Ξ”t ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° составит Ξ”p = Np0 = 1/6 nSvΞ”t 2 m0 v = 1/3 nSm0 v 2

Π‘ΠΈΠ»Π°, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° стСнку, F = Ξ”p/ Ξ”t

Π° Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, обусловлСнноС этой силой, Ρ‚.Π΅. Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°, Ρ€Π°Π²Π½ΠΎ p = F/S

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ давлСния ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

БрСдняя кинСтичСская энСргия ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π—Π°ΠΊΠΎΠ½ Π”Π°Π»ΡŒΡ‚ΠΎΠ½Π°

Π’ 1801 Π³. Π”ΠΆΠΎΠ½ Π”Π°Π»ΡŒΡ‚ΠΎΠ½ установил, Ρ‡Ρ‚ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ смСси Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π³Π°Π·ΠΎΠ² Ρ€Π°Π²Π½ΠΎ суммС ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ всСх Π³Π°Π·ΠΎΠ², ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… смСсь. Π­Ρ‚ΠΎΡ‚ Π·Π°ΠΊΠΎΠ½ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½Π° ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ Π³Π°Π·ΠΎΠ². ΠŸΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π³Π°Π·Π°, входящСго Π² состав смСси, это Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ создавалось Π±Ρ‹ Ρ‚ΠΎΠΉ ΠΆΠ΅ массой Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³Π°Π·Π°, Ссли ΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π½ΠΈΠΌΠ°Ρ‚ΡŒ вСсь объСм смСси ΠΏΡ€ΠΈ Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π’ΠΎΠ·Π΄ΡƒΡ… Π² ΠΊΠΎΠΌΠ½Π°Ρ‚Π΅, Π³Π΄Π΅ ΠΌΡ‹ находимся, прСдставляСт собой смСсь Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π³Π°Π·ΠΎΠ², Π² основном β€” Π°Π·ΠΎΡ‚Π° (ΠΎΠΊΠΎΠ»ΠΎ 80%) ΠΈ кислорода (ΠΎΠΊΠΎΠ»ΠΎ 20%). ΠŸΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· этих Π³Π°Π·ΠΎΠ² β€” это Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΈΠΌΠ΅Π» Π±Ρ‹ Π³Π°Π·, Ссли Π±Ρ‹ ΠΎΠ½ ΠΎΠ΄ΠΈΠ½ Π·Π°Π½ΠΈΠΌΠ°Π» вСсь объСм. К ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, Ссли Π±Ρ‹ всС Π³Π°Π·Ρ‹, ΠΊΡ€ΠΎΠΌΠ΅ Π°Π·ΠΎΡ‚Π°, ΡƒΠ΄Π°Π»ΠΈΠ»ΠΈ ΠΈΠ· ΠΊΠΎΠΌΠ½Π°Ρ‚Ρ‹, Ρ‚ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ, ΠΈ Π±Ρ‹Π»ΠΎ Π±Ρ‹ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·ΠΎΡ‚Π°. Π—Π°ΠΊΠΎΠ½ Π”Π°Π»ΡŒΡ‚ΠΎΠ½Π° ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ‰Π΅Π΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ всСх Π³Π°Π·ΠΎΠ² вмСстС взятых Ρ€Π°Π²Π½ΠΎ суммС ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π³Π°Π·Π° Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как сказал.

Вопросы ΠΊ экзамСну

Для всСх Π³Ρ€ΡƒΠΏΠΏ тСхничСского профиля

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ газаБписок Π»Π΅ΠΊΡ†ΠΈΠΉ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ Π·Π° 1,2 сСмСстр

Π£Ρ€ΠΎΠΊ 15. ЛСкция 15. Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π·

Как извСстно, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ вСщСства Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Ρ‚Ρ€Π΅Ρ… Π°Π³Ρ€Π΅Π³Π°Ρ‚Π½Ρ‹Ρ… состояниях: Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ, ΠΆΠΈΠ΄ΠΊΠΎΠΌ ΠΈ Π³Π°Π·ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΌ.

Π£Ρ‡Π΅Π½ΠΈΠ΅ ΠΎ свойствах вСщСства Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π°Π³Ρ€Π΅Π³Π°Ρ‚Π½Ρ‹Ρ… состояниях основываСтся Π½Π° прСдставлСниях ΠΎΠ± Π°Ρ‚ΠΎΠΌΠ½ΠΎ-молСкулярном строСнии ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΈΡ€Π°. Π’ основС молСкулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ строСния вСщСства (МКВ) Π»Π΅ΠΆΠ°Ρ‚ Ρ‚Ρ€ΠΈ основных полоТСния:

Π—Π½Π°Ρ‡ΠΈΡ‚, Π°Π³Ρ€Π΅Π³Π°Ρ‚Π½ΠΎΠ΅ состояниС вСщСства зависит ΠΎΡ‚ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ располоТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, сил взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° ΠΈΡ… двиТСния.

БильнСС всСго проявляСтся взаимодСйствиС частиц вСщСства Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ состоянии. РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ€Π°Π²Π½ΠΎ ΠΈΡ… собствСнным Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌ. Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ достаточно ΡΠΈΠ»ΡŒΠ½ΠΎΠΌΡƒ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ, Ρ‡Ρ‚ΠΎ практичСски Π»ΠΈΡˆΠ°Π΅Ρ‚ частицы возмоТности Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ: ΠΎΠ½ΠΈ ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‚ΡΡ ΠΎΠΊΠΎΠ»ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ полоТСния равновСсия. Они ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ Ρ„ΠΎΡ€ΠΌΡƒ ΠΈ объСм.

Бвойства ТидкостСй Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±ΡŠΡΡΠ½ΡΡŽΡ‚ΡΡ ΠΈΡ… строСниСм. Частицы вСщСства Π² Тидкостях Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ ΠΌΠ΅Π½Π΅Π΅ интСнсивно, Ρ‡Π΅ΠΌ Π² Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… Ρ‚Π΅Π»Π°Ρ…, ΠΈ поэтому ΠΌΠΎΠ³ΡƒΡ‚ скачками ΠΌΠ΅Π½ΡΡ‚ΡŒ своС мСстополоТСниС – Тидкости Π½Π΅ ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ свою Ρ„ΠΎΡ€ΠΌΡƒ – ΠΎΠ½ΠΈ Ρ‚Π΅ΠΊΡƒΡ‡ΠΈ. Жидкости ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ объСм.

Π“Π°Π· прСдставляСт собой собраниС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», бСспорядочно двиТущихся ΠΏΠΎ всСм направлСниям нСзависимо Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π°. Π“Π°Π·Ρ‹ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ собствСнной Ρ„ΠΎΡ€ΠΌΡ‹, Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ вСсь прСдоставляСмый ΠΈΠΌ объСм ΠΈ Π»Π΅Π³ΠΊΠΎ ΡΠΆΠΈΠΌΠ°ΡŽΡ‚ΡΡ.

МодСль идСального Π³Π°Π·Π°. Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ срСднСй кинСтичСской энСргиСй.

Для выяснСния закономСрностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ подчиняСтся ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ вСщСства Π² Π³Π°Π·ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΌ состоянии, рассматриваСтся идСализированная модСль Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Π°Π·ΠΎΠ² – ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π·. Π­Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΉ Π³Π°Π·, ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π½Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ Π½Π° расстоянии, Π½ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ ΠΈ со стСнками сосуда ΠΏΡ€ΠΈ столкновСниях.

Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π· – это Π³Π°Π·, взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»ΠΎ. (Π•ΠΊ>>Π•Ρ€)

Π˜Π΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ Π³Π°Π· – это модСль, придуманная ΡƒΡ‡Π΅Π½Ρ‹ΠΌΠΈ для познания Π³Π°Π·ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ наблюдаСм Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎ. Она ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ Π½Π΅ любой Π³Π°Π·. НС ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠ°, ΠΊΠΎΠ³Π΄Π° Π³Π°Π· сильно сТат, ΠΊΠΎΠ³Π΄Π° Π³Π°Π· ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΠΆΠΈΠ΄ΠΊΠΎΠ΅ состояниС. Π Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ Π³Π°Π·Ρ‹ Π²Π΅Π΄ΡƒΡ‚ сСбя ΠΊΠ°ΠΊ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ, ΠΊΠΎΠ³Π΄Π° срСднСС расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌΠΈ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π· большС ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ², Ρ‚.Π΅. ΠΏΡ€ΠΈ достаточно Π±ΠΎΠ»ΡŒΡˆΠΈΡ… разрСТСниях.

Бвойства идСального Π³Π°Π·Π°:

БостояниС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ массы Π³Π°Π·ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ³ΠΎ вСщСства Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ зависимыми Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° физичСскими Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ состояния. К Π½ΠΈΠΌ относятся объСм V, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ p ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° T.

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ – физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ силы F, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π½Π° элСмСнт повСрхности пСрпСндикулярно ΠΊ Π½Π΅ΠΉ, ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ S этого элСмСнта.

Π”ΠΎ настоящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π»ΡΡŽΡ‚ΡΡ внСсистСмныС Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ давлСния:

тСхничСская атмосфСра 1 Π°Ρ‚ = 9,81-104 Па;

физичСская атмосфСра 1 Π°Ρ‚ΠΌ = 1,013-105 Па;

ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Ρ‚ΡƒΡ‚Π½ΠΎΠ³ΠΎ столба 1 ΠΌΠΌ Ρ€Ρ‚. ст.= 133 Па;

1 Π°Ρ‚ΠΌ = = 760 ΠΌΠΌ Ρ€Ρ‚. ст. = 1013 гПа.

Как Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°? КаТдая ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π° Π³Π°Π·Π°, ΡƒΠ΄Π°Ρ€ΡΡΡΡŒ ΠΎ стСнку сосуда, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ½Π° находится, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ°Π»ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ дСй­ствуСт Π½Π° стСнку с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ силой. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ бСспорядочных ΡƒΠ΄Π°Ρ€ΠΎΠ² ΠΎ стСнку сила со стороны всСх ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ стСнки быстро мСняСтся со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ (срСднСй) Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ бСспорядочных ΡƒΠ΄Π°Ρ€ΠΎΠ² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΎ стСнки сосуда, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ находится Π³Π°Π·.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ модСль идСального Π³Π°Π·Π°, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Π½Π° стСнку сосуда.

Π’ процСссС взаимодСйствия ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ со стСнкой сосуда ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ силы, ΠΏΠΎΠ΄Ρ‡ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ΡΡ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ ΠΡŒΡŽΡ‚ΠΎΠ½Π°. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ проСкция Ο…x скорости ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, пСрпСндикулярная стСнкС, измСняСт свой Π·Π½Π°ΠΊ Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ, Π° проСкция Ο…y скорости, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ стСнкС, остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠŸΡ€ΠΈΠ±ΠΎΡ€Ρ‹, ΠΈΠ·ΠΌΠ΅Ρ€ΡΡŽΡ‰ΠΈΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ°Π½ΠΎΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. ΠœΠ°Π½ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ„ΠΈΠΊΡΠΈΡ€ΡƒΒ­ΡŽΡ‚ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ силу давлСния, ΠΏΡ€ΠΈΡ…ΠΎΠ΄ΡΡ‰ΡƒΡŽΡΡ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π΅Π³ΠΎ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ элСмСнта (ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹) ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ° давлСния.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π° НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠœΠ΅Ρ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΌΠ°Π½ΠΎΠΌΠ΅Ρ‚Ρ€ – для измСрСния Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Основной Π΅Π³ΠΎ Ρ‡Π°ΡΡ‚ΡŒΡŽ являСтся изогнутая Ρ‚Ρ€ΡƒΠ±ΠΊΠ° А, ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ ΠΊΠΎΠ½Π΅Ρ† ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ припаян ΠΊ Ρ‚Ρ€ΡƒΠ±ΠΊΠ΅ Π’, Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ поступаСт Π³Π°Π·, Π° Π·Π°ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ – соСдинСн со стрСлкой. Π“Π°Π· поступаСт Ρ‡Π΅Ρ€Π΅Π· ΠΊΡ€Π°Π½ ΠΈ Ρ‚Ρ€ΡƒΠ±ΠΊΡƒ Π’ Π² Ρ‚Ρ€ΡƒΠ±ΠΊΡƒ А ΠΈ Ρ€Π°Π·Π³ΠΈΠ±Π°Π΅Ρ‚ Π΅Ρ‘. Π‘Π²ΠΎΠ±ΠΎΠ΄Π½Ρ‹ΠΉ ΠΊΠΎΠ½Π΅Ρ† Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡΡΡŒ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅Π΄Π°ΡŽΡ‰ΠΈΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΈ стрСлку. Π¨ΠΊΠ°Π»Π° Π³Ρ€Π°Π΄ΡƒΠΈΡ€ΠΎΠ²Π°Π½Π° Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… давлСния.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π° НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ молСкулярно-кинСтичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ идСального Π³Π°Π·Π°.

ОсновноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ МКВ: Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ идСального Π³Π°Π·Π° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ массы ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ срСднСму ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ скорости двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»

n = N/V – число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ объСма, ΠΈΠ»ΠΈ концСнтрация ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»;

Π’Π°ΠΊ ΠΊΠ°ΠΊ срСдняя кинСтичСская энСргия ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» E = m0*v 2 /2, Ρ‚ΠΎ Π΄ΠΎΠΌΠ½ΠΎΠΆΠΈΠ² основноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ МКВ Π½Π° 2, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ p = 2/3Ξ‡ nΞ‡(m0Ξ‡ v 2 )/2 = 2/3Ξ‡EΞ‡n

Π”Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° Ρ€Π°Π²Π½ΠΎ 2/3 ΠΎΡ‚ срСднСй кинСтичСской энСргии ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ содСрТатся Π² Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΌ объСмС Π³Π°Π·Π°.

Π’Π°ΠΊ ΠΊΠ°ΠΊ m0Ξ‡n = m0Ξ‡N/V = m/V = ρ, Π³Π΄Π΅ ρ – ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Π³Π°Π·Π°, Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ p = 1/3Ξ‡ ρ· v 2

ΠžΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Π½Ρ‹ΠΉ Π³Π°Π·ΠΎΠ²Ρ‹ΠΉ Π·Π°ΠΊΠΎΠ½.

ΠœΠ°ΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ состояниС Π³Π°Π·Π°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ тСрмодинамичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π³Π°Π·Π°.

Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΠΌΠΈ тСрмодинамичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π³Π°Π·Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΅Π³ΠΎ объСм V, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ€ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π’.

ВсякоС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ состояния Π³Π°Π·Π° называСтся тСрмодинамичСским процСссом.

Π’ любом тСрмодинамичСском процСссС ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ Π΅Π³ΠΎ состояниС.

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ значСниями Ρ‚Π΅Ρ… ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΈ ΠΊΠΎΠ½Ρ†Π΅ процСсса называСтся Π³Π°Π·ΠΎΠ²Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ.

Π“Π°Π·ΠΎΠ²Ρ‹ΠΉ Π·Π°ΠΊΠΎΠ½, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΉ связь ΠΌΠ΅ΠΆΠ΄Ρƒ всСми трСмя ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π³Π°Π·Π° называСтся ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Π½Ρ‹ΠΌ Π³Π°Π·ΠΎΠ²Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ.

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ p = nkT ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π° с Π΅Π³ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ для ΠΌΠΎΠ΄Π΅Π»ΠΈ идСального Π³Π°Π·Π°, ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ со стСнками сосуда Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²ΠΎ врСмя ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… столкновСний. Π­Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² Π΄Ρ€ΡƒΠ³ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ связь ΠΌΠ΅ΠΆΠ΄Ρƒ макроскопичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π³Π°Π·Π° – объСмом V, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ p, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ T ΠΈ количСством вСщСства Ξ½. Для этого Π½ΡƒΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ равСнства

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π³Π΄Π΅ n – концСнтрация ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», N – ΠΎΠ±Ρ‰Π΅Π΅ число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», V – объСм Π³Π°Π·Π°

Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°ΠΈΠ»ΠΈ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ постоянной массС Π³Π°Π·Π° N остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ, Ρ‚ΠΎ Nk – постоянноС число, Π·Π½Π°Ρ‡ΠΈΡ‚

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠŸΡ€ΠΈ постоянной массС Π³Π°Π·Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ объСма Π½Π° Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ Π½Π° Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΡƒΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π³Π°Π·Π°, Π΅ΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° одинаковая для всСх состояний этой массы Π³Π°Π·Π°.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, объСмом ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ Π³Π°Π·Π° Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ Π² сСрСдинС XIX Π²Π΅ΠΊΠ° французским Ρ„ΠΈΠ·ΠΈΠΊΠΎΠΌ Π‘. ΠšΠ»Π°ΠΏΠ΅ΠΉΡ€ΠΎΠ½ΠΎΠΌ ΠΈ часто Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠšΠ»Π°ΠΉΠΏΠ΅Ρ€ΠΎΠ½Π°.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠšΠ»Π°ΠΉΠΏΠ΅Ρ€ΠΎΠ½Π° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

Π—Π΄Π΅ΡΡŒ N – число ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π² сосудС, Ξ½ – количСство вСщСства, NА – постоянная Авогадро, m – масса Π³Π°Π·Π° Π² сосудС, M – молярная масса Π³Π°Π·Π°. Π’ ΠΈΡ‚ΠΎΠ³Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ постоянной Авогадро NА Π½Π° ΠΏΠΎΡΡ‚ΠΎΡΠ½Π½ΡƒΡŽ Π‘ΠΎΠ»ΡŒΡ†ΠΌΠ°Π½Π° k называСтся ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠΉ (молярной) Π³Π°Π·ΠΎΠ²ΠΎΠΉ постоянной ΠΈ обозначаСтся Π±ΡƒΠΊΠ²ΠΎΠΉ R.

Π•Π΅ числСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² БИ R = 8,31 Π”ΠΆ/моль·К

НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°. Π€ΠΎΡ‚ΠΎ НазовитС макроскопичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Π°Π·Π°

называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ состояния идСального Π³Π°Π·Π°.

Π’ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π°ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ записано Π”. И. ΠœΠ΅Π½Π΄Π΅Π»Π΅Π΅Π²Ρ‹ΠΌ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ состояния Π³Π°Π·Π° называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠšΠ»Π°ΠΏΠ΅ΠΉΡ€ΠΎΠ½Π°β€“ΠœΠ΅Π½Π΄Π΅Π»Π΅Π΅Π²Π°.`

Для ΠΎΠ΄Π½ΠΎΠ³ΠΎ моля любого Π³Π°Π·Π° это ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄: pV=RT

Установим физичСский смысл молярной Π³Π°Π·ΠΎΠ²ΠΎΠΉ постоянной. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π΅ ΠΏΠΎΠ΄ ΠΏΠΎΡ€ΡˆΠ½Π΅ΠΌ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π• находится 1 моль Π³Π°Π·Π°, объСм ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ V. Если Π½Π°Π³Ρ€Π΅Ρ‚ΡŒ Π³Π°Π· ΠΈΠ·ΠΎΠ±Π°Ρ€Π½ΠΎ (ΠΏΡ€ΠΈ постоянном Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ) Π½Π° 1 К, Ρ‚ΠΎ ΠΏΠΎΡ€ΡˆΠ΅Π½ΡŒ поднимСтся Π½Π° высоту Ξ”h, Π° обьСм Π³Π°Π·Π° увСличится Π½Π° Ξ”V.

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ pV=RT для Π½Π°Π³Ρ€Π΅Ρ‚ΠΎΠ³ΠΎ Π³Π°Π·Π°: p ( V + Ξ”V ) = R (T + 1)

Ξ”V = SΞ”h, Π³Π΄Π΅ S – ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ основания Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π°. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

pS = F – сила давлСния.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ FΞ”h = R, Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ силы Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€ΡˆΠ½Ρ FΞ”h = А – Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΏΠΎΡ€ΡˆΠ½Ρ, ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅ΠΌΠ°Ρ этой силой ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π²Π½Π΅ΡˆΠ½ΠΈΡ… сил ΠΏΡ€ΠΈ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠΈ Π³Π°Π·Π°.

Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ (молярная) газовая постоянная числСнно Ρ€Π°Π²Π½Π° Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ 1 моль Π³Π°Π·Π° ΠΏΡ€ΠΈ ΠΈΠ·ΠΎΠ±Π°Ρ€Π½ΠΎΠΌ Π½Π°Π³Ρ€Π΅Π²Π°Π½ΠΈΠΈ Π΅Π³ΠΎ Π½Π° 1 К.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *