За что отвечает гладкая эпс
Строение и функции эндоплазматической сети: гладкая и шероховатая ЭПС
Строение эндоплазматической сети
Прежде чем перейти к строению и функциям ЭПС, дадим ее определение.
Что такое ЭПС в биологии?
Эндоплазматическая сеть, а также ЭПС или эндоплазматический ретикулум — сложная ультрамикроскопическая разветвленная и взаимосвязанная система мембран, относительно равномерно пронизывающая цитоплазматическую массу всех эукариотических клеток.
Что такое ЭПС теперь понятно. Вот как выглядит эндоплазматическая сеть на рисунке:
На рисунке ЭПС видно, из чего она состоит. Также рисунок ЭПС демонстрирует два вида ЭПС, о которых подробнее будет написано ниже.
Описание строения и функций ЭПС нужно начинать с того, что ЭПС — это мембранная органелла, которая включает в себя плоские мембранные мешочки: цистерны, каналы и трубочки. За счет такого строения ЭПС способствует существенному увеличению площади внутренней клеточной поверхности и делению клетки на секции. Строение эндоплазматической сети предполагает, что внутри клетки находится матрикс, представляющий собой умеренно плотный и рыхлый материал, то есть, продукт синтеза.
В каждой из секций клетки содержится различное количество химических веществ. По этой причине химические реакции в незначительном объеме клетки могут происходить одновременно или в определенной последовательности.
Особенность строения эндоплазматической сети — это ее открытие в перинуклеарное пространство, которое представляет собой полость, находящуюся между двух мембран кариолемы.
Еще один важный момент, касающийся строения ЭПС, заключается в том, что ее мембрана состоит из белков, липидов (в большей степени из фосфолипидов) и ферментов (аденозинтрифосфатаза, ферменты синтеза мембранных липидов).
В некоторых случаях выделяют переходящую или транзиторную эндоплазматическую сеть (тЭС). Она размещается в месте перехода одного вида ЭС в другой.
Гранулярная эндоплазматическая сеть характерная для всех клеток за исключением сперматозоидов. Степень развития этой сети зависит от специализации клетки.
Эндоплазматическая сеть в клетках эпителиальных железистых (печени — ее клетки синтезируют альбумины сыворотки крови, поджелудочной железы — ее клетки вырабатывают пищеварительные ферменты), фибробластах (клетки соединительной ткани — продуцируют белок коллаген), плазматических клетках (производят иммуноглобулины) развита очень сильно.
Агранулярная ЭС характерна для клеток надпочечников (они синтезируют стероидные гормоны), клеток мышц (они участвуют в обмене кальция) и клеток фундальных желез желудка (они работают над выделением ионов хлора).
Еще одни вид мембран цитоплазматической сети — разветвленные мембранные трубочки. Внутри них находится множество специфических ферментов, а также везикулы, которые представляют собой небольшие пузырьки, окруженные мембраной, чаще всего находящиеся около трубочек и цистерн. Их роль — обеспечение переноса синтезируемых веществ.
Это что касается особенностей строения эндоплазматической сети.
Теперь перейдем к функциям ЭПС.
Функции эндоплазматической сети
Говоря о строении и функциях эндоплазматической сети, важно напомнить следующее.
Эндоплазматический ретикулум — это аппарат синтеза и транспорта цитоплазматических веществ (в некоторой степени), за счет которого клетка может выполнять достаточно сложные функции.
К функциям ЭПС обоих видов относится все, что связано с синтезом и транспортом веществ. Что такое эндоплазматическая сеть в этом случае? Ретикулум — это универсальная транспортная система. Поэтому неудивительно, что выделяют определенные функции эндоплазматического ретикулума.
Общих функций у эндоплазматической сети обоих видов немало.
Благодаря своему содержимому (матриксу) и мембранам обе ЭПС в клетке выполняют общие функции.
Функции гладкой ЭПС и функции шероховатой ЭПС:
Какие функции выполняет эндоплазматическая сеть в растительной клетке? В растительной клетке эндоплазматическая сеть выполняет функцию синтеза провакуолей, которые обеспечивают жизнь растительной клетки.
У каждого вида ЭПС есть свои специфические функции, которые зависят от строения и функций эндоплазматической сети в целом.
Функции гладкой ЭПС (агранулярной)
Гладкий эндоплазматический ретикулум помимо тех функций, что были перечислены выше, выполняет еще кое какие специфические функции:
Функции шероховатой ЭПС (гранулярной)
Для гранулярной эндоплазматической сети характерны следующие функции:
Множество функций ЭПС имеет отношение к транспорту белков, синтез которых осуществляется в рибосомах (они расположены на поверхности ЭПС). Белки после синтеза перемещаются внутрь сети, затем скручиваются и получают, таким образом, третичную структуру.
В процессе транспортировки к цистернам белок существенно изменяется. В некоторых случаях, к примеру, происходит его фосфориллирование или превращение в гликопротеин. Привычный путь для белка пролегает через зернистую ЭПС в аппарат Гольджи. Отсюда у него есть три варианта: выйти наружу клетки, поступать к другим органеллам той же клетки (к лизосомам) или отложиться как запасные гранулы.
Зернистая и незернистая эндоплазматическая сетка участвуют в клетках печени в детоксикации ядовитых веществ, которые после этого успешно выводятся из клетки.
У эндоплазматической сетки, как и у внешней плазматической мембраны, наблюдается избирательная проницаемость. В результате концентрация веществ внутри и снаружи каналов сетки получается неодинаковой. Этот момент важен для функции клетки.
Эндоплазматическая сетка мышечных клеток содержит больше ионов кальция, чем ее цитоплазма. Ионы кальция, покидая каналы эндоплазматической сетки, запускают процесс, связанный с сокращением мышечных волокон.
Ферменты самой сети синтезируют липидные компоненты мембран ЭПС, а белковые компоненты поступают из рибосом, которые находятся на ее мембранах. Гладкая ЭПС не обладает собственными факторам синтеза белка. Принято считать, что образование этой органеллы происходит как результат потери гранулярной ЭПС рибосом.
Строение и функции эндоплазматической сети в таблице (и других органоидов клетки):

Эндоплазматическая сеть
Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.
Содержание
История открытия
Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.
Строение
Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.
Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм, 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.
Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.
Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.
Выделяют два вида ЭПР:
На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.
Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.
Функции эндоплазматического ретикулума
При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.
Функции агранулярного эндоплазматического ретикулума
Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.
Синтез гормонов
К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.
Накопление и преобразование углеводов
Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.
Нейтрализация ядов
Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют встретившиеся молекулы активных веществ, которые таким образом могут быть растворены быстрее. В случае непрерывного поступления ядов, медикаментов или алкоголя, образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.
Саркоплазматический ретикулум
Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, образует ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10 −3 моль, в то время как в цитозоле порядка 10 −7 моль (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И приём и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи от физиологических условий.
Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как: активация или торможение ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.
Функции гранулярного эндоплазматического ретикулума
Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.
Синтез белков
Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.
Синтез мембран
Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.
Смотри также
Полезное
Смотреть что такое “Эндоплазматическая сеть” в других словарях:
ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ — эндоплазматический ретикулум (от эндо. и плазма), органоид эукариотной клетки. Открыт К. Портером в 1945 в эндоплазме фибробластов. Представляет собой систему мелких вакуолей и канальцев, соединённых друг с другом и ограниченных одинарной… … Биологический энциклопедический словарь
ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ — ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ, система мембран и каналов в ЦИТОПЛАЗМЕ клеток ЭУКАРИОТОВ (т. е. имеющих ядро) растений, животных, грибов. Служит для переноса вещества внутри клетки. Части эндоплазматической сети покрыты мельчайшими гранулами, носящими… … Научно-технический энциклопедический словарь
эндоплазматическая сеть — (эндоплазматический ретикулум), клеточный органоид; система канальцев, пузырьков и «цистерн», отграниченных мембранами. Расположена в цитоплазме клетки. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в… … Энциклопедический словарь
эндоплазматическая сеть — endoplazminis tinklas statusas T sritis augalininkystė apibrėžtis Submikroskopinis ląstelės organoidas, sudarytas iš citoplazmoje išsiskaidžiusių ir tarpusavyje sudarančių sistemą kanalėlių ir pūslelių, atliekančių metabolitų transporto ląstelių… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
эндоплазматическая сеть — ( ндо + (цито) плазма; син.: цитоплазматическая сеть, эндоплазматический ретикулу ) органоид, представляющий собой расположенную в цитоплазме систему канальцев, вакуолей и цистерн, отграниченных мембранами; обеспечивает транспорт веществ в… … Большой медицинский словарь
Эндоплазматическая сеть — (биол.) внутриклеточный органоид, представленный системой плоских цистерн, канальцев и пузырьков, ограниченных мембранами; обеспечивает главным образом передвижение веществ из окружающей среды в цитоплазму и между внутриклеточными… … Большая советская энциклопедия
эндоплазматическая сеть — см. эндоплазматический ретикулюм … Анатомия и морфология растений
Гладкая эндоплазматическая сеть.
Краткий обзор:
ЭПС- одномембранная органелла,представляет собой совокупность мембранных вакуолей, трубочек и плоских мешков (цистерн), распределённых тем или иным способом в цитоплазме.


Клеточный центр (центросома)— немембранный органоид, главный центр организации микротрубочек и регулятор хода клеточного цикла в клетках эукариот.
Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки.
Центриоли, обычно расположенные в паре (диплосома), и окруженные зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросфера). Совокупность центриолей и центросферы называют клеточным центром. Совокупность центриолей и центросомы называют клеточным центром.

|
В центросоме центриоли расположены под прямым углом друг к другу. В ходе фазы S клеточного цикла центриоли дуплицируются. При этом образовавашиеся дочерние центриоли располагаются перпендикулярно по отношению к материнским. В митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для микротрубочек аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых ), жгутики не развиваются.
Веретено́ деле́ния — динамичная структура, которая образуется в митозе и мейозе для обеспечения сегрегации хромосом и деления клетки. 
Веретено образуют три основных структурных элемента: микротрубочки, полюса деления и хромосомы. В организации полюсов деления у животных участвуют центросомы, содержащие центриоли. Важную роль в формировании веретена играют моторные белки, относящиеся к семействам динеинов и кинезинов.
Полноценное веретено деления образуется на стадии прометафазы после разрушения ядерной мембраны.
Веретено деления состоит из двух полуверетён. Полуверетено образуется из поляризованных микротрубочек. Отрицательные минус-концы микротрубочек собираются на полюсах веретена вокруг центросом. Плюс-концы микротрубочек отдаляются от двух полюсов и пересекаются в средней экваториальной части веретена. У большинства позвоночных полуверетено состоит из 600—750 микротрубочек, 30—40 % которых заканчиваются на кинетохорах. Микротрубочки, которые соединяют полюса веретена с кинетохорами хромосом, называютсякинетохорными. Причём каждый кинетохор при образовании веретена связывается с множеством микротрубочек и образует кинетохорный пучок. Микротрубочки, которые располагаются между полюсами и не присоединяются к кинетохорам, называютсямежполюсными. Часть микротрубочек веретена образует вокруг каждого полюса радиальные структуры, называемые звёздами или астерами. Такие микротрубочки называются астральными.
Вопрос №11
Краткий обзор (из методички) – Двумембранные образование, имеющие собственную ДНК, предположительно возникли из прокариот после объединение с эукариотическими клетками в результате эволюции и последующего с ними сосуществования (симбиоза). Обеспечивают синтез АТФ за счет реакций окислительного фосфорилирования. Митохондрии контролируют внутриклеточное содержание ионов кальция, обеспечивают образование тепла, а также запрограммированной гибели клеток.
Метаболические функцииМитохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем β-окисления и частично цикл мочевины. Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са 2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л). Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.
12. Рибосомы. Полирибосомы. Митохондриальные рибосомы.
Краткий обзор:
Рибосома- немембранный двухсубъкдиничный (малая и большая субъединицы) органоид, состоящий из рРНК и белков. Рибосомы имеют сферическую или слегка эллипсоидную форму.
Полисома, или полирибосома — несколько рибосом, одновременно транслирующих одну молекулу мРНК.
Рибосомы митохондрий, или миторибосомы, ассоциированы с митохондриальным матриксом.
Основная часть:
Рибосома- немембранный двухсубъкдиничный (малая и большая субъединицы) органоид, состоящий из рРНК и белков. Рибосомы имеют сферическую или слегка эллипсоидную форму. Служит для биосинтеза белка из аминокислот.Рибосомы подразделяются на свободные и связанные с мембранами ЭПС и наружной ядерной мембраной. Свободные рибосомы синтезируют синтезируют белки для самой клетки, а связанные- на экспорт. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре —ядрышке.
Полисома, или полирибосома — несколько рибосом, одновременно транслирующих одну молекулу мРНК.
Рибосомы митохондрий, или миторибосомы, ассоциированы с митохондриальным матриксом.
Вопрос №13
Краткий обзор.
Аппарат Гольджи — это система внутриклеточных мембранных структур: цистерн и пузырьков, в которых накапливаются вещества, синтезированные на мембранах ЭПС.
Вещества доставляются в комплекс Гольджи в мембранных пузырьках, которые отшнуровываются от эндоплазматической сети и присоединяются к цистернам комплекса Гольджи. Здесь эти вещества претерпевают различные биохимические превращения, а затем снова упаковываются в мембранные пузырьки, и большая их часть транспортируется к цитоплазматической мембране. Мембрана пузырьков сливается с цитоплазматической мембраной, а содержимое выводится за пределы клетки посредством экзоцитоза.
В комплексе Гольджи растительных клеток синтезируются полисахариды клеточной стенки (оболочки).
Еще одна важная функция комплекса Гольджи — это образование лизосом.
Комплекс Гольджи был открыт в 1898 г. итальянским гистологом Камилло Гольджи В нервных клетках.
Основная часть.
Комплекс Гольджи — это место конденсации и накопления продуктов секреции, вырабатываемых в других участках клетки, в основном в ЭПС.
На наружной, вогнутой стороне стопки из пузырьков постоянно формируются новые цистерны, а на внутренней стороне цистерны превращаются обратно в пузырьки.
При световой микроскопии он может распределяться в виде сложных сетей или отдельных диффузно расположенных участков (диктиосом). Форма и положение органеллы не имеют принципиального значения и могут изменяться в зависимости от функционального состояния клетки.
При электронной микроскопии видно, что комплекс состоит из скоплений плоских цистерн
В целом комплекс Гольджи участвует в сегрегации — это разделение, отделение определенных частей от основной массы, и накоплении продуктов, синтезированных в ЭПС, в их химических перестройках, созревании.
Секреторная функция комплекса Гольджи заключается в том, что синтезированный на рибосомах экспортируемый белок, отделяющийся и накапливающийся внутри цистерн ЭПС, транспортируется в вакуоли пластинчатого аппарата.
Комплекс Гольджи может резко увеличиваться в размерах в клетках, активно осуществляющих секреторную функцию,обычно сопровождается развитием ЭПС, а в случае синтеза белков — ядрышка.
Во время деления клетки комплекс Гольджи распадается до отдельных цистерн или пузырьков, которые распределяются между двумя делящимися клетками и в конце телофазы восстанавливают структурную целостность органеллы.
Вне деления происходит непрерывное обновление мембранного аппарата за счет пузырьков, мигрирующих из ЭПС и дистальных цистерн диктиосомы за счет проксимальных компартментов.
о содержимого в процессе лизосомного экзоцитоза.
14. Лизосомы-одномембранные структуры, образуются путем слияния перинуклеарных эндосом,содержащих лизосомные гидролазы и лизосомные мембранные белки, с везикулами, подлежащими деградации ( периферической эндосомой, фагосомой или аутофагоцитозной вакуолью).
* перинуклеарные эндосомыобразуются при слиянии везикул, содержащие лизосомные гидролазы после их синтеза в гранулярной эпс и процессинга в комплексе Гольджи, и везикул, в мембрану которых встроены специфические лизосомные мембранные белки.
* периферические эндосомыобразуются в результате эндоцитоза.
*мультивезикулярные тельцаобразуются при слиянии перинуклеарной и периферической эндосом.
*фаголизосомаобразуется при слиянии перинуклеарной эндосомы и фагосомы.
*аутофаголизосомаобразуется при слиянии перинуклеарной эндосомы и аутофагоцитозной вакуоли, содержащей подлежащие деградации эндогенные молекулы и органеллы.
Функция:



