Задний винт вертолета для чего

Как устроен вертолет и почему он летает.

Доброго времени суток уважаемый гость. Сегодня, я расскажу Вам, как устроен вертолет, и почему он летает. Прежде всего, давайте определим, что это за зверь. Итак, вертолет или геликоптер – это летательный аппарат тяжелее воздуха.

Как устроен вертолет. Основные части.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Схемы расположения роторов.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Двигатели и органы управления.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Двигатель может быть как поршневой, так и газотурбинный или турбовальный. В кабине пилота находятся органы управления и приборы контроля. К органам управления относятся:

Принцип полета и контроль.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Подъемную силу, позволяющую вертолету летать, создает основной ротор. Лопасти ротора выполнены из легкого прочного материала, с профилем как у крыла самолета. Управление ими осуществляется при помощи автомата перекоса (АП). Который, в свою очередь, контролируется ручкой управления вертолетом и ручкой шаг-газ. У вертолетов (классической) схемы, хвостовой винт, располагается вертикально на конце хвостовой балки летательного аппарата. И, в свою очередь, служит для компенсации реактивного момента от ОР, и поворотов вокруг вертикальной оси.

Управление рулевым винтом, происходит посредством автомата перекоса, связанного с педалями маневрирования по курсу.

Как устроен вертолет. Автомат перекоса.

Теперь, давайте рассмотрим работу (АП) основного ротора. Этот замечательный механизм изобрел русским ученым Б. Н. Юрьевым в 1911 году. Открыв этим путь к вертолетостроению. Именно при помощи этого хитроумного изобретения, вертолеты могут летать передом, задом и даже боком. А самое главное, не переворачиваться при горизонтальном полете.

Маневрирование по тангажу и крену производится за счет изменения угла наклона конуса ОР. Сам же угол наклона конуса изменяется при увеличении угла атаки лопасти в определенном секторе ее вращения. Рассмотрим движение вертолета вперед. Каждая лопасть ОР, проходя в задней четверти, увеличивает угол атаки, а в передней – уменьшает. В результате, подъемная сила в задней четверти больше, а в передней – меньше.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Таким образом, ось вращения несущего винта наклоняется вперед, а вместе с ней наклоняется и весь вертолет. За счет этого наклона и создается горизонтальная составляющая подъемной силы. И вертолет летит вперед. При полетах задом и боком, все происходит точно так же, только углы атаки увеличиваются, и уменьшаются в нужных секторах вращения.

Дальше, еще интересней. Вертолет летит вперед. Что же происходит с подъемной силой справа и слева. Представим, что несущий винт вращается по часовой стрелке. Значит, лопасти в секторе слева имеют условное направление движения вперед, а справа – назад. И вертолет летит вперед. Следовательно, за счет набегающего потока от движения вертолета, скорость левой лопасти больше чем правой. А значит, и подъемная сила, создаваемая левой больше чем – правой. Вот тут то и опять начинает работать автомат перекоса. Он корректирует углы атаки лопастей, движущихся по направлению движения вертолета, и — против. Тем самым уравнивая подъемную силу обеих. И не давая летательному вертолету опрокинуться. Здорово, не правда ли?

Источник

ХВОСТОВОЙ винт

Хвостовой винт служит для уравновешивания реактивного момента несущего винта и для путевого управления вертолетом. Па вертолетах Ми-4 установлен хвостовой винт В1-ХІУ.

Винт В1-ХІУ — трехлопастный, толкающий, изменяемого в полете шага. Для путевого управления вертолетом при полете на режиме само — вращения винт имеет реверсирование тяги, т. е. может работать, как тянущий.

‘Винт устанавливается на вал хвостового редуктора, расположенно­го на концевой балке. Управление шагом винта механическое, ножное и производится из кабины летчиков. Изменение шага винта ведет к из­менению тяги винта, чем и осуществляется поворот вертолета в ту или другую сторону. При полете вперед или назад направление тяги винта перпендикулярно к направлению полета. Вследствие косого обдува, ве­личина тяти по ометаемому диску переменна.

В целях значительного — уменьшения момента в плоскости — тяти, пере­даваемого от — винта на фюзеляж (в — случае жесткой заделки лопасти), а также для уменьшения переменных напряжений у лопасти, последние имеют горизонтальные шарниры, с осью, расположенной в плоскости вращения.

При изменении шага лопасть поворачивается в своей заделке — во втул­ке («осевой шарнир»).

Управление поворотом лопасти осуществляется с помощью кардана, центр которого — расположен одновременно на оси горизонтального и осе­вого- шарниров лопасти. Во втулке имеется кривошипно-шатунный ме­ханизм для преобразования поступательного движения штока управле­ния во вращательное движение лопасти при изменении шага.

На ви-нт-е установлено противо-обледенительное устройство- обеспечи­вающее нормальную работу винта в условиях обледенения.

Винт — приводится во вращение — от главного редуктора через хвосто­вой вал; при этом источником мощности может быть как двигатель (нормальный полет), так и — несущий винт (на режиме самовраще-ния). Рабочее число — оборотов винта на вертолете Ми-4 равно 950 — 1130 об/мин.

Основные технические данные винта

Направление вращения винта……………………. левое при виде со сто­

Источник

Привод хвостового винта вертолета

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Владельцы патента RU 2526331:

Изобретение относится к области авиации, в частности к конструкции хвостовых винтов вертолетов. Хвостовой винт (12) вертолета (10) имеет привод (1), содержащий электрическую машину с поперечным магнитным потоком с возбуждением от постоянных магнитов с дуплексным расположением статоров. Между двумя статорами (4), каждый из которых имеет систему (8) кольцевых обмоток, расположен дисковый ротор (5), который имеет постоянные магниты (15) и на наружной окружности которого расположены лопасти (14) хвостового винта (12). Каждая система (8) кольцевых обмоток расположена концентрично вокруг оси (17) хвостового винта (12), так что кольцевые обмотки системы (8) кольцевых обмоток расположены относительно оси радиально друг над другом. Ротор через радиальный подшипник опирается на ось (17). Постоянные магниты (15) являются слоистыми. Системы (8) кольцевых обмоток охлаждаются маслом, при этом система (8) кольцевых обмоток каждого статора (4) находится в масляной ванне. Достигается уменьшение удельного веса вертолета при одновременном упрощении конструкции хвостового винта. 11 з.п. ф-лы, 2 ил.

Изобретение относится к приводу хвостового винта вертолета с помощью динамоэлектрической машины.

Вертолет является вертикально взлетающим и вертикально приземляющимся воздушным транспортным средством, в котором используется для создания подъемной силы и тяги с помощью двигателя один или несколько винтов, которые работают в виде вращающихся несущих поверхностей или крыльев или винтовых лопастей, за счет чего вертолет относится к летательным аппаратам с несущим винтом.

В наиболее часто применяемых одновинтовых системах на оси главного винта возникает крутящий момент, который вызывает противоположно направленное вращение фюзеляжа вертолета. Для предотвращения этого имеется, среди прочего, возможность предусмотрения боковой противотяги с помощью хвостового винта.

Конфигурация с хвостовым винтом является наиболее распространенной в конструкции вертолетов для компенсации создаваемого главным винтом крутящего момента. При этом с помощью установленного в хвостовой консоли вертолета за пределами круга главного винта хвостового винта создается горизонтальная тяга для противодействия вращению фюзеляжа вокруг вертикальной оси. Наряду с компенсацией крутящего момента, хвостовой винт служит также для управления вертолетом вокруг главной оси, т.е. поворотом вправо/влево. Тягой хвостового винта управляют, как правило, с помощью системы рычагов, которая изменяет общий угол установки лопастей винта. Хвостовой винт потребляет примерно 20% всей приводной мощности вертолета.

Недостатком применяемых до настоящего времени приводов хвостового винта является то, что сравнительно большая доля приводной мощности и общего веса вертолета приходится на хвостовой винт.

Для компенсации крутящего момента из WO 09/143669 А1 известен вертолет с двойными винтами, винты которого приводятся во вращение с помощью электродвигателей.

Из DE 3915526 А1 известен дуплексный электродвигатель, в котором полый ротор приводится во вращение снаружи и изнутри, и тем самым должна достигаться более высокая мощность по сравнению с обычными электродвигателями.

Из DE 19856647 А1 известен электродвигатель с большим крутящим моментом, который выполнен в виде многополюсной электрической машины с возбуждением от постоянных магнитов и имеет полый цилиндрический ротор из магнитомягкой стали, который на обеих сторонах обложен постоянными магнитами, расположен коаксиально между наружным и внутренним статором и соединен с возможностью вращения с установленным в корпусе машины валом.

Исходя из этого, в основу изобретения положена задача дальнейшего уменьшения удельного веса вертолета при одновременном обеспечении простоты конструкция хвостового винта.

Решение поставленной задачи достигается с помощью привода хвостового винта вертолета с помощью машины с поперечным магнитным потоком с возбуждением от постоянных магнитов с дуплексным расположением тем, что между двумя статорами, которые имеют каждый систему кольцевых обмоток, расположен дисковый ротор, который имеет постоянные магниты и на наружной окружности которого расположены лопасти хвостового винта.

Согласно изобретению, для привода хвостового винта предусмотрен электродвигатель с поперечным магнитным потоком с дуплексным расположением, который имеет кольцевые обмотки. Для повышения использования, согласно изобретению, электродвигателя с поперечным магнитным потоком этот электродвигатель расположен с дуплексным расположением, т.е. как на одной, так и на другой стороне дискового ротора предусмотрены статоры с кольцевыми обмотками. При этом два статора расположены так, что их канавки и зубцы находятся противоположно друг другу, а между ними расположен снабженный постоянными магнитами дисковый ротор.

Каждый статор имеет систему кольцевых обмоток, обмотки которой расположены концентрично вокруг оси хвостового винта. Кольцевые обмотки всего привода хвостового винта предпочтительно выполнены в виде двух систем кольцевых обмоток трехфазного тока, при этом каждый статор имеет систему кольцевых обмоток трехфазного тока. Для регулирования осевого положения ротора и тем самым всего хвостового винта используются обе системы кольцевых обмоток. При этом используется принципиальный способ симметричных компонентов для осуществления упрощенного анализа не симметрии в системе трехфазного тока или системе более высокого порядка.

При этом несимметричная система разделяется на систему прямой последовательности фаз, систему обратной последовательности фаз и систему нулевой последовательности.

При этом системы нулевой последовательности этих обеих систем кольцевых обмоток предпочтительно регулируется независимо друг от друга. Таким образом, необходимую осевую силу опоры можно создавать электрически.

Для создания осевой силы опоры и для управления ею возможно также предусмотрение не только системы нулевой последовательности, но также других комбинаций фазовых токов систем кольцевых обмоток. Система нулевой последовательности является комбинацией фазовых токов, которые не оказывают влияния на крутящий момент привода. Это особенно предпочтительно, поскольку за счет этого создание крутящего момента не зависит от создания осевой опорной силы.

Другая благоприятная комбинация фазовых токов достигается с помощью регулирования возбуждения, при котором с помощью преобразователя частоты достигается расширенный диапазон частоты вращения и более высокая точность позиционирования привода. При осевой магнитной опоре важным является лишь вектор переменного тока в направлении d на основании трансформации d/q. Известно, что в синхронном электродвигателе направление q трехфазного тока создает крутящий момент. Направление d не влияет на крутящий момент. Таким образом, можно, согласно изобретению, выполнять электродвигатель с поперечным магнитным потоком так, что направление d управляет силой притяжения между ротором и соответствующим статором однозначным и непрерывным образом. Для этого векторного регулирования важным является положение полюсного колеса, т.е. ротора. Это можно осуществлять без датчиков или с помощью кодера.

Таким образом, помимо системы нулевой последовательности систем трехфазных токов в принципе также пригодно направление d трехфазного тока для создания осевого магнитного подшипника.

Когда система нулевой последовательности трехфазного тока используется для создания и управления осевой опорной силой, то ротор привода также должен иметь ферромагнитные свойства, т.е. быть, в частности, магнитомягким. За счет этого устанавливается пригодная для использования плотность сил линий поля нулевой последовательности на диске ротора. Таким образом, постоянные магниты должны быть расположены на тонкой ферромагнитной пластине в виде уплотнительной шайбы. Для уменьшения потерь на вихревые токи в дисковом роторе шайба выполнена веерообразно или спицеобразно, или с концентричными прорезями.

Величина электродвигателя определяется крутящим моментом. Для получения большого крутящего момента предусмотрен многополюсный электродвигатель, в котором полюса ротора лежат на сравнительно большом диаметре.

Для дальнейшего повышения мощности привода кольцевые обмотки статора охлаждаются маслом. При этом особенно предпочтительно, когда система кольцевых обмоток одного статора окружена закрытой масляной ванной, в которой циркулирует масло, которое отводит тепловые потери обмотки и тем самым обеспечивает охлаждение соответствующей системы обмоток.

В другом варианте выполнения масляная ванна окружает не только систему кольцевых обмоток, а весь статор, так что могут отводиться также потери в железе статора.

Ротор выполнен в виде диска и снабжен на своих обращенных к статорам сторонах стойкими к высоким температурам постоянными магнитами.

Для дальнейшего уменьшения вихревых токов внутри постоянных магнитов, постоянные магниты выполнены слоистыми. При этом структура слоев выбрана так, что эффективно прерываются возможные пути прохождения вихревых токов внутри постоянных магнитов.

Через воздушный зазор между ротором и статорами ротор охлаждается проходящим воздухом.

Ротор, который выполнен в виде диска, имеет в качестве несущего материала по меньшей мере частично, наряду с материалами с ферромагнитными свойствами также высокопрочный карбон/кефлар с заделанными стойкими к высоким температурам постоянными магнитами. На наружной окружности дискового ротора предпочтительно расположены в радиальном удлинении диска лопасти хвостового винта.

Ниже приводится более подробное пояснение изобретения, а также предпочтительных вариантов выполнения изобретения со ссылками на прилагаемые чертежи, на которых изображено:

На фиг.1 схематично показан вертолет 10 с главным винтом 11 и показанным в качестве примера хвостовым винтом 12, который расположен на хвостовой консоли 13. При этом расположенный в хвостовой консоли 13 вертолета 10 снаружи круга главного винта 11 хвостовой винт создает горизонтальную тягу с целью противодействия вращению фюзеляжа вокруг вертикальной оси. Наряду с компенсацией крутящего момента, хвостовой винт 12 служит также для управления вертолетом вокруг главной оси, т.е. поворотов вправо и влево.

На фиг.2 показан привод 1, согласно изобретению, хвостового винта 12 вертолета 10 в виде машины с поперечным потоком с возбуждением от постоянных магнитов с дуплексным расположением. При этом как слева, так и справа от ротора 5 находится статор 4 с кольцевыми обмотками 8, которые расположены концентрично вокруг оси 17. Ротор 5 установлен с возможностью вращения вокруг оси 17 с помощью радиального подшипника 3. На радиально наружном крае дискового ротора 5 предусмотрена несущая конструкция 2, на которой расположены лопасти 14 хвостового винта 12. При этом в этом варианте выполнения лопасти 14 расположены в радиальном удлинении дискового ротора 5.

В общую идею изобретения входят также другие варианты выполнения, в которых предусмотрено другое конструктивное расположение лопастей 14 винта, например, на наружной поверхности горшкообразной несущей конструкции 2.

По меньшей мере один радиальный подшипник 3 обеспечивает лишь радиальную опору и восприятие радиальных сил, в то время как осевая опора ротора 5 осуществляется с помощью обеих систем 8 кольцевых обмоток, предпочтительно систем кольцевых обмоток трехфазного тока в соответствующем статоре 4. То есть имеется осевая магнитная опора. Для этой регулируемой магнитной опоры в этом варианте выполнения применяется магнитное обратное замыкание электродвигателя с поперечным магнитным потоком. Обе системы нулевой последовательности систем кольцевых обмоток трехфазного тока регулируются независимо друг от друга, с целью удерживания соответственно, обеспечения опоры ротора 5 и тем самым в конечном итоге хвостового винта 12 в его заданном осевом положении.

Схематично изображенные линии 7 поля создаются с помощью соответствующей системы нулевой последовательности.

За счет изменения тока левой и правой системынулевой последовательности можно управлять величиной и знаком, т.е. влево или право, силой притяжения.

В хвостовом винте 12 возникают аэродинамические силы главным образом в осевом направлении, которые в данном случае воспринимаются с помощью осевой магнитной опоры.

Ротор 5 со своими расположенными на диске постоянными магнитами 15 движется в воздушном зазоре между обоими статорами 4 в воздухе и охлаждается воздухом. Потери на вихревые токи расположенных на роторе 5 постоянных магнитов 15 отводятся в одном варианте выполнения с помощью посторонней вентиляции.

В другом особенно предпочтительном варианте выполнения аэродинамика хвостового винта 12 выполнена так, что воздушное охлаждение воздушного зазора 6 обеспечивается на основании эффекта Вентури. Таким образом, нет необходимости в дополнительной посторонней вентиляции, которая, с одной стороны, требует дополнительного контролирования ее действия и, с другой стороны, приводит к увеличению веса вертолета 10.

Однако для уменьшения потерь на вихревые токи постоянные магниты 15 выполнены слоистыми.

Предпочтительно, привод 1 и хвостовой винт 12 имеют общую радиальную и осевую опору, и нет необходимости в редукторе и/или дополнительных опорных блоках в зоне хвостового винта.

Для дальнейшего снижения веса вертолета статоры 4 предпочтительно снабжены многослойными металлическими материалами.

Для дальнейшего повышения использования привода 1 хвостового винта 12 кольцевые обмотки 8 имеют масляное охлаждение. При этом масляная ванна 9 окружает концентрично проходящую кольцевую обмотку, т.е. одну фазу статора 4 или всю систему кольцевых обмоток соответствующего статора 4. Это схематично показано на фиг.2 в нижней половине на левом статоре 4. Таким образом отводятся потери тепла системы обмоток.

Также весь статор 4 со своим ярмом, в частности магнитопроводом и системой обмоток, может находиться в масляной ванне.

Таким образом, указанная система привода 1 хвостового винта 12 выполнена в виде электродвигателя с поперечным магнитным потоком с дуплексным расположением для вертолета с мощностью 234 кВт при частоте вращения примерно 3600 об/мин, при наружном диаметре 16 привода 1 хвостового винта 12 примерно 3500 мм, что соответствует внутреннему диаметру хвостового винта 12.

1. Хвостовой винт (12) вертолета (10), привод (1) которого осуществляется с помощью машины с поперечным магнитным потоком с возбуждением от постоянных магнитов с дуплексным расположением, отличающийся тем, что между двумя статорами (4), которые имеют каждый систему (8) кольцевых обмоток, расположен дисковый ротор (5), который имеет постоянные магниты (15) и на наружной окружности которого расположены лопасти (14) хвостового винта (12), при этом каждая система (8) кольцевых обмоток расположена концентрично вокруг оси (17) хвостового винта (12), так что кольцевые обмотки системы (8) кольцевых обмоток расположены относительно оси радиально друг над другом, при этом ротор через радиальный подшипник опирается на ось (17).

2. Хвостовой винт (12) по п.1, отличающийся тем, что постоянные магниты (15) являются слоистыми.

3. Хвостовой винт (12) по любому из п.1 или 2, отличающийся тем, что, по меньшей мере, системы (8) кольцевых обмоток охлаждаются маслом.

4. Хвостовой винт (12) по п.3, отличающийся тем, что система (8) кольцевых обмоток каждого статора (4) находится в масляной ванне.

5. Хвостовой винт (12) по п.1, отличающийся тем, что концепция опоры предусматривает общую радиальную опору и общую осевую опору привода (1) хвостового винта (12).

6. Хвостовой винт (12) по п.2, отличающийся тем, что концепция опоры предусматривает общую радиальную опору и общую осевую опору привода (1) хвостового винта (12).

7. Хвостовой винт (12) по п.3, отличающийся тем, что концепция опоры предусматривает общую радиальную опору и общую осевую опору привода (1) хвостового винта (12).

8. Хвостовой винт (12) по п.4, отличающийся тем, что концепция опоры предусматривает общую радиальную опору и общую осевую опору привода (1) хвостового винта (12).

9. Хвостовой винт (12) по п.5, отличающийся тем, что осевая опора хвостового винта является регулируемой магнитной осевой опорой, которая реализована, в частности, с помощью системы нулевой последовательности системы трехфазного тока соответствующих систем (8) кольцевых обмоток статоров (4).

10. Хвостовой винт (12) по п.6, отличающийся тем, что осевая опора хвостового винта является регулируемой магнитной осевой опорой, которая реализована, в частности, с помощью системы нулевой последовательности системы трехфазного тока соответствующих систем (8) кольцевых обмоток статоров (4).

11. Хвостовой винт (12) по п.7, отличающийся тем, что осевая опора хвостового винта является регулируемой магнитной осевой опорой, которая реализована, в частности, с помощью системы нулевой последовательности системы трехфазного тока соответствующих систем (8) кольцевых обмоток статоров (4).

12. Хвостовой винт (12) по п.8, отличающийся тем, что осевая опора хвостового винта является регулируемой магнитной осевой опорой, которая реализована, в частности, с помощью системы нулевой последовательности системы трехфазного тока соответствующих систем (8) кольцевых обмоток статоров (4).

Источник

Винтокрылые лошадки

Ликбез по семи основным вертолетным схемам

Фотография: Official U.S. Navy Page / flickr.com

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo — испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Official U.S. Navy Page / flickr.com

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная — по типу компенсации реактивного момента несущего винта.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Official U.S. Navy Page / flickr.com

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах — от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним — повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами — диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта — это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Phillip Capper / flickr.com

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали автомат перекоса — это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Official U.S. Navy Page / flickr.com

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед — машина полетит вперед, назад — назад, вбок — вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает — для задней. Таким образом сзади подъемная сила увеличивается, а спереди — уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта — верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Продольная и поперечная схемы

Фотография: Wikimedia Commons

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга — один находится над носовой частью вертолета, а другой — над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) — массой до 12,7 тонны.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения — пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Ville Hyvönen / flickr.com

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны — половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, — в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону — вращение винтов на одной половине аппарата ускоряется, а на другой — замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Гексакоптер DJI S800.

Фотография: Wikimedia Commons

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Задний винт вертолета для чего. Смотреть фото Задний винт вертолета для чего. Смотреть картинку Задний винт вертолета для чего. Картинка про Задний винт вертолета для чего. Фото Задний винт вертолета для чего

Фотография: Wikimedia Commons

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 — до 315 километров в час. Для сравнения, комбинированный вертолет — демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом — Sikorksy X2 — до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *