Заземляющий разъединитель что это
Большая Энциклопедия Нефти и Газа
Заземляющий разъединитель
Заземляющие разъединители рассчитаны на полный ток короткого замыкания, они имеют все необходимые блокировки с выдвижным элементом выключателя, а также оперативные блокировки внешних присоединений. Они фиксированы во включенном и отключенном положениях. [1]
Заземляющий разъединитель в шкафу с ТН имеет конструкцию, аналогичную заземляющим разъединителям, установленным в шкафах с выключателями. В шкафах разрядников, которые также установлены на выдвижных элементах, заземляющие разъединители сборных шин отсутствуют. В этом случае отсек нижних заземляющих контактов не используется. [2]
Заземляющий разъединитель может быть заперт висячим замком в отключенном и включенном положениях. Операции с заземляющим разъединителем производятся с помощью специального рычага. Заземляющий разъединитель сблокирован с выдвижным элементом таким образом, чтобы невозможно было включить заземляющий разъединитель при рабочем положении выдвижного элемента. При этом вкатывание выдвижного элемента в рабочее положение возможно только при отключенном положении заземляющего разъединителя. В шкафу ТН установлен заземляющий разъединитель сборных шин. [3]
Заземляющий разъединитель включается только тогда, когда тележка находится вне отсека. Для включения специальную съемную ручку 13 вставляют в отверстие привода и, оттягивая фиксатор, поворачивают ее вниз. [5]
Заземляющий разъединитель 16 имеет привод и запрещающую блокировку против вкатывания выдвижного элемента при включенном заземляющем разъединителе. [6]
Заземляющий разъединитель имеет фиксированные положения в замкнутом и разомкнутом положениях и может быть заперт навесным замком. Включение и отключение заземляющего разъединителя выполняются съемной рукояткой, при этом имеется блокировка, запрещающая включение заземляющего разъединителя при рабочем положении выдвижного элемента, а также не допускающая возможности перемещения выдвижного элемента из контрольного положения в рабочее при включенном положении заземляющего разъединителя. При включенном заземляющем разъединителе выдвижной элемент может быть перемещен только до контрольного положения. [8]
Заземляющий разъединитель в шкафах K-XXVI имеет более надежную конструкцию, рассчитанную и испытанную на полный ток короткого замыкания. [10]
Заземляющие разъединители рассчитаны и испытаны на полный ток короткого замыкания. В шкафах, с выключателем и выводом шин назад заземляющий разъединитель установлен в отсеке нижних разъединяющих контактов; привод его расположен в фасадном отсеке на левой боковине корпуса шкафа. [11]
Заземляющий разъединитель сборных шин должен стоять только в одной камере. [13]
Если заземляющий разъединитель включен, тележку нельзя возвратить в рабочее положение, так как этому будет препятствовать упор 9, опускающийся при выкатывании тележки. Когда разъединитель отключен, упор поднят вверх зубом 8, что дает возможность закатить тележку в рабочее положение. [15]
Высоковольтные разъединители: назначение и принцип работы
Высоковольтный разъединитель – это коммутационное устройство, обеспечивающее безопасный доступ к распределительному оборудованию и другим электроприборам, которые работают под высоким напряжением. Его используют для включения или отключения участков электрической цепи, находящихся без нагрузок.
Разъединители устанавливают на следующих видах устройств:
Применение разъединителей на этом оборудовании исключает различные аварийные ситуации и опасность самопроизвольного отключения или включения соединений элекроцепи. Основой конструкции таких приборов являются надежные контакты, которые гарантируют размыкание и замыкание цепи при любой погоде.
Разъединители имеют жесткую конструкцию в виде силовой рамы с вмонтированными в нее элементами:
Принцип действия заключается в том, что контактные ножи поворачиваются и тем самым обеспечивают соединение или разъединение цепи электрического тока. В зависимости от конструкции разъединителя поворот ножей может быть горизонтальным или вертикальным. Управление ножами осуществляется оператором при помощи специальной штанги с рукояткой, которая служит приводом для поворотного механизма. Такие рукоятки монтируются под разъединителем на опорах. Ручное управление осуществляется на линиях до 6 кВ. На линиях выше 110 кВ управление выполняется электроприводом с применением металлических шкафов, расположенных на безопасном расстоянии.
Существует огромное разнообразие разъединителей, которые выпускаются российской промышленностью. Их можно разделить по следующим признакам:
К высоковольтным разъединителям предъявляются требования:
Простая и надежная конструкция, которую удобно монтировать и эксплуатировать.
Как устроены и работают высоковольтные разъединители
Высоковольтные аппараты: как устроены и работают разъединители Среди электрического оборудования высокого напряжения используются различные коммутационные аппараты. Одна из их групп получила название «Разъединители».
Эти конструкции используются для создания такого разрыва в электрической схеме, который не только исключает подачу напряжения, но и должен быть виден визуально.
Дело в том, что за всю многолетнюю историю эксплуатации электроэнергии сложились традиции безопасного ее использования. Отключения электричества выключателями нагрузки со сложными техническими устройствами скрыты от наблюдения. В случае возникновения у них поломок напряжение остается на участке, предназначенном для вывода из работы. Это очень опасно и является прямой предпосылкой для поражения людей электрическим током или выводу электротехнического оборудования из строя.
По этим причинам разъединители монтируют в высоковольтной схеме последовательно с выключателями и, как правило, после них для обеспечения безопасности производства работ.
Для понимания этого процесса представим участок электрической схемы, когда электроэнергия от источника на трансформаторной подстанции №1 передается по линии электропередач, разделенной на 5 рабочих участков к подстанциям №2 и №3.
Допустим, что на участке №3 (выделен красным цветом) возникла необходимость проведения технических работ, требующих по условиям безопасности снятия напряжения.
Для этого потребуется выполнить отключения силовых выключателей:
питающей подстанции №1;
потребляющих подстанций №2 и №3, которые находятся в работе по стороне нижнего напряжения и будут генерировать электроэнергию на линию, включая участок №3, за счет эффекта обратной трансформации.
При любой неисправности одного из выключателей или ошибочном либо их самопроизвольном несанкционированном включении на рабочем участке №3 появится напряжение, а это недопустимо.
Поэтому в электрическую схему после каждого выключателя смонтирован разъединитель, который дополнительно создает безопасный и видимый разрыв цепи.
Представленная выше картинка выполнена в упрощенном однолинейном исполнении. Однако, на практике высоковольтные линии электропередач используют минимум три фазы. Более точная схема для нашего случая подготовки рабочего участка №3 к техническому обслуживанию будет иметь следующий вид.
На ней каждая фаза «А», «В», «С» линии электропередачи показана своим цветом: желтым, зеленым и красным. На всех подстанциях она разрывается вначале своим выключателем, а затем — разъединителем. Только после этого каждая фаза линии электропередачи для участка №3 заземляется.
На этом рисунке вопрос заземления показан не полностью, а только для демонстрации необходимости его выполнения.
Место расположения разъединителя в схеме определяет его упрощенную конструкцию по сравнению с силовым выключателем нагрузки. Это объясняется тем, что выключатель должен надежно разрывать проходящую через него электроэнергию в нормальном режиме работы и аварийные токи коротких замыканий огромных величин, которые могут возникнуть в непредвиденный момент времени в любом месте участка схемы, защищаемого выключателем.
Такие процессы очень сложные. Они связаны с ионизацией окружающей среды и возникновением мощной электрической дуги, которая может сжечь контакты. Для предотвращения этого явления используют различные технические решения, основанные на применении сред с изоляционными свойствами. Ими наполняют рабочую область выключателя, в которой производится разрыв цепи.
Второе направление борьбы с дугой – это обеспечение максимального быстродействия отключающего механизма. Время его работы сопоставимо со взрывом и происходит примерно за два периода колебания гармоники синусоидального тока.
Столько же времени требуется современным защитам со средствами автоматики для выявления неисправности в схеме и подачи команды на исполнительный элемент выключателя.
Поэтому время отключения аварийных ситуаций защитами и автоматикой составляет порядка 0,04 сек.
Для разъединителей такие сложные устройства не нужны. Они спроектированы для отключения руками оператора или электродвигателями приводов без спешки. Поскольку разъединители устанавливаются после выключателей, то ими оперируют исключительно после снятия напряжения, когда электрической дуги быть не может.
Место расположения разъединителя и выключателя можно посмотреть на фрагменте оперативной схемы диспетчера.
Так выглядит фотография участка этой подстанции, переданная со спутника.
Вид на этот же участок местности с земли со стороны вводной опоры.
Устройство высоковольтного разъединителя довольно сложное, но в то же время оно намного проще, чем у силового выключателя такого же напряжения. Рассмотрим примеры их исполнения для оборудования 330 кВ.
Единственные токи, которые отключают подобные разъединители — это возможные емкостные разряды, образуемые наведенным напряжением. На разрыв их мощности и рассчитаны силовые контакты разъединителей. В рабочем состоянии через них проходит максимальный ток нагрузки.
Для оперирования каждой фазой разъединителя по отдельности или в комплексе предназначены шкафы управления приводами.
Если внимательно посмотреть на приведенные фотографии, то видно, что коммутационные контакты выключателя и разъединителя расположены на значительной высоте. Это сделано из соображений безопасности для остального оборудования и обслуживающего эксплуатационного персонала.
На ОРУ-110 кВ безопасная высота расположения разъединителя меньше.
Так лучше их обслуживать, проще и дешевле монтировать. Однако, это требует от обслуживающего персонала, находящегося под введенным в работу разъединителем, повышенного внимания. На практике встречались случаи, когда работники в сырую погоду поднимали вверх косу, сокращая безопасное расстояние до электрооборудования и попадая под напряжение 110 кВ.
Это лишний раз подтверждает, что технику безопасности необходимо не только досконально знать, но и безукоризненно выполнять.
Месторасположение разъединителей воздушных ЛЭП 10 кВ на опорах около крытого распределительного устройства с силовыми выключателями подстанции показано на фотографии.
На следующей снимке виден способ управления разъединителем линии 10 кВ с помощью ручного привода. Питающий трансформатор находится рядом.
Разъединители воздушных линий на 6 кВ имеют такое же устройство, как и для линий 10 кВ.
На всех приведенных фотографиях видно, что любой разъединитель состоит из следующих конструктивных элементов:
силовой рамы, размещенной на безопасной высоте;
опорных изоляторов, жестко смонтированных на раме по концам образуемого разрыва для каждой фазы;
контактной системы, обеспечивающей надежное прохождение номинального тока линии и исключающей в разомкнутом состоянии подачу напряжения на участок, выделенный для обслуживания;
системы управления перемещением ножей.
Разъединители классифицируют по:
характеру установки (внутренней или наружной);
виду движения ножа для создания разрыва цепи (поворотного, рубящего либо качающегося типа);
способам управления: вручную оперативной изоляционной штангой или системой рычагов либо автоматически электродвигателями (может использоваться гидравлика и даже пневматика) с системой управления.
Все операции с разъединителями в работающей схеме относятся к опасным работам, их выполняет только обученный и подготовленный персонал по специально оформленным бланкам под непосредственным контролем диспетчера.
Особенностью высоковольтных разъединителей является то, что вместе с ними на одной платформе часто располагают заземляющие ножи с обеих сторон создаваемого разрыва. Ими удобно манипулировать оперативному персоналу, выполняющему переключения в схемах электроснабжения.
При переключениях важно правильно соблюдать очередность наложения/снятия заземления и включения/вывода из работы разъединителя. Нельзя включать силовой выключатель при установленном заземлении с любой стороны разъединителя. Это приведет к возникновению короткого замыкания.
Также нельзя накладывать заземления при включенном разъединителе и поданном напряжении на схему, что тоже создаст КЗ.
С целью недопущения при переключениях ошибочных ситуаций используется техническая блокировка действий оперативного персонала со стационарными заземлителями, разъединителями и выключателями. Она может быть:
электрической (на основе использования электромагнитного замка);
Конструкции блокировок бывают разными. Их сложность и надежность увеличивается с повышением величины напряжения, используемого в первичной схеме.
Для управления электрическими видами блокировок на валах поворота контактных ножей монтируют дополнительные контакты, используемые во вторичных цепях. Их называют блок контактами КСА. Они полностью повторяют положение разъединителя, одновременно с ним замыкаются или размыкаются. С целью расширения возможностей схем управления, защит и автоматики выключателей и линий эти блок контакты создают как с нормально открытым, так и закрытым положением.
На приводах стационарных заземляющих ножей и выключателей нагрузки тоже монтируются аналогичные блок контакты.
Схемы управления электромагнитной блокировкой построены на принципе создания последовательных и параллельных цепочек электрических схем из контактов повторителей положения первичного оборудования: выключателей, разъединителей, заземляющих ножей.
Когда положение одного из этих коммутационных аппаратов изменяется оперативным персоналом, то соответственно происходит переключение их вторичных контактов, собранных по определенной логической схеме. Если при этом нарушаются требования безопасности, то электромагнитная блокировка запрещает дальнейшие действия с силовым оборудованием.
В этом случае необходимо разбираться с правильностью выполненных действий и искать допущенную ошибку.
Схемы оперативной блокировки разъединителей на подстанциях питаются от специальных источников напряжения постоянного тока.
Обязательные требования к разъединителям:
обеспечение видимого разрыва;
устойчивость конструкции к динамическому и термическому воздействию;
надежность изоляции при любых атмосферных явлениях;
четкость работы при ухудшении условий эксплуатации в дождь, снегопад, образованиях наледи;
простота конструкции, обеспечивающая удобство эксплуатации и обслуживания.
Более подробно эксплуатационные характеристики разъединителей изложены в этой статье.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое высоковольтный разъединитель
Разъединитель – называют устройство, предназначенное для коммутации (разъединения) электрической цепи без тока или с малым током, который для обеспечения безопасности имеет в отключенном положении изоляционный промежуток, основной функцией разъединителя является показ видимого разрыва цепи. Рассмотрим конструктивные особенности данных устройств и порядок их применения в современных условиях.
Конструкция и принцип работы
Конструкция аппаратов разрабатывается с соблюдением следующих принципов:
Устройство лишено элементов, предназначенных для искрогашения, поэтому, чтобы исключить возникновение дуги при установке на оборудовании с высоким напряжением, указанные аппараты подключаются совместно с выключателями. Таким образом разъединителем линия отсоединяется только после отключения подачи напряжения.
Конструктивно разъединители состоят из жёсткой рамы со смонтированными на ней следующими элементами:
Аппараты, рассчитанные на работу с высокими напряжениями, имеют два контактных полуножа, которые разводятся в противоположные стороны, что позволяет исключить опасность пробоя между контактами(пример на фото выше он находиться слева РГП-35 с 2-мя полуножами).
Также присутствуют конструктивные особенности, в зависимости от разновидности устройства.
Срабатывание аппарата достигается путём поворота контактных ножей, включающих или отключающих линию. Это может выполняться вручную или посредством специального механизма, обеспечивающего автоматическое срабатывание разъединителя.
Основное назначение и применение
Необходимость использования указанных разъединителей в современных энергетических сетях объясняется прежде всего необходимостью соблюдения безопасности при эксплуатации оборудования и линий передач.
Данные аппараты применяются в местах подключения контактных линий к питающим и в целях безопасного выполнения коммутационных операций при эксплуатации электрических сетей.
Разъединители могут устанавливаться на следующем оборудовании и линиях:
Использование разъединителей исключает опасность самопроизвольного включения и выключения соединений, предотвращая нештатные и аварийные ситуации.
Классификация
Российскими предприятиями производятся разъединители различных разновидностей, отличающихся следующими особенностями исполнения:
Также аппараты различаются по величине номинального напряжения и тока, на который они рассчитаны, наличию заземлителей, фигурных ножей и другим конструктивным особенностям.
Разъединители обозначаются, в соответствии с разновидностью и конструктивным исполнением.
Пример обозначения, в котором буквы и цифры указывают на следующие моменты:
По маркировке изделия можно получить информацию о его разновидности и характеристиках.
Приводы разъединителей
Приводы предназначены для управления главными и заземляющими ножами разъединителей.
Приводы имеют механические указатели положения разъединителя,причём в рычажных указателем может служить рукоятка и устройства переключения вспомогательных цепей (управления, сигнализации, блокировки) типа КСА или ПУ. Для исключения неправильных действий с разъединителями и заземляющими ножами на приводах монтируют блоки. Применяются следующие системы блокировок: механические (М), механические замковые системы Гинодмана (МБГ), электрические (Э) и электромагнитные (ЭМ).
Для управления главными и заземляющими ножами разъединители выпускают с одним, двумя или тремя валами.
Электродвигательные приводы имеют двигательное и ручное управления главными ножами и ручное управление ножами заземления, а также дистанционное управление. Для оперативного управления вручную двигательные привода оснащаются съемными рукоятками.
Для защиты от внешних факторов (пыли и дождя) привода в соответствии с ГОСТ 14254-96 имеют следующие степени защиты (код 1Р):
Буквы в условных обозначениях приводов означают:
Ручные приводы серии ПР предназначены для управления главными и заземляющими ножами разъединителей наружной установки. Приводы типов ПР-2 предназначены для управления разъединителями на напряжение 10-110 кВ и отделителями на напряжение 35-110 кВ.
Приводы ПР-3 предназначены для управления разъединителями на напряжение 10-35 кВ в закрытых помещениях. Приводы ПР-4 предназначены для управления разъединителями внутренней установки серии РРИ.
Приводы ПРИ предназначены для управления заземляющими ножами, я ПРИ-1 – главными и заземляющими ножами разъединителей наружной установки. Приводы типа ПРН-10 предназначены для оперирования главными и заземляющими ножами разъединителей серии РЛНД на напряжение 10 кВ. Двигательные приводы ПД – 3 предназначены для управления разъединителями наружной установки, ПД-12-разъединителями внутренней установки, а привод ПД-5 для управления разъединителями в закрытых и открытых РУ.
Примерная цена
Цена разъединителей может различаться, в зависимости от показателей напряжения, на которые они рассчитаны, и вида устройства.
Стоимость может составлять от 20 000 до 100 000 рублей и более, учитывая приведённые выше факторы и расценки изготовителя.
Технические характеристики
Аппараты отличаются следующими основными техническими характеристиками:
Требования к эксплуатации, техническое обслуживание
Для обеспечения безопасной эксплуатации разъединителей, устройства должны подбираться, исходя из условий использования и технических характеристик. В процессе работы аппараты подвергаются регулярному техническому обслуживанию, проводимому аттестованным персоналом с присвоенной группой электробезопасности.
Регулярные внешние осмотры проводятся с целью выявления:
Также предусмотрено проведение ежегодного текущего ремонта и капитального – каждые 3 – 4 года. Во время ремонтных работ проводится ревизия и наладка оборудования, устранение неисправностей, замена повреждённых элементов или установка новых устройств взамен отслуживших нормативный срок.
Порядок проведения испытаний
Эксплуатация разъединителей предусматривает регулярное проведение следующих испытаний, измерений и проверок:
Также дополнительно проверяется работа механизмов и блокировок. Полученные результаты оформляются соответствующими отчётами, с указанием определённых показателей.
Использование высоковольтных разъединителей позволяет обеспечить безопасность в процессе коммутации линий при большом значении напряжения.
Более подробно про разъединитель можете прочитать в “ГОСТ Р 52726-2007 Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним”: Открыть и читать файл
Заземляющий разъединитель что это
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
РАЗЪЕДИНИТЕЛИ И ЗАЗЕМЛИТЕЛИ ПЕРЕМЕННОГО ТОКА НА НАПРЯЖЕНИЕ
СВЫШЕ 1 кВ И ПРИВОДЫ К НИМ
Общие технические условия
Alternating current disconnectors and earthing switches for voltage above 1 kV
and operating mechanisms for them. General specifications
Дата введения 2008-01-01*
_________________________________
* Для разъединителей и заземлителей
переменного тока на напряжение свыше 1 кВ,
разработанных до 01.01.2008,
действует ГОСТ 689-90.
Сведения о стандарте
1 РАЗРАБОТАН Закрытым акционерным обществом «Завод электротехнического оборудования» г.Великие Луки
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 37 «Электрооборудование для передачи, преобразования и перераспределения электроэнергии»
ВНЕСЕНА поправка, опубликованная в ИУС N 6, 2008 год
Поправка внесена изготовителем базы данных
1 Область применения
Настоящий стандарт распространяется на разъединители и заземлители переменного тока на напряжение свыше 1 кВ промышленной частоты 50 Гц, а также на приводы к ним.
Требования настоящего стандарта не распространяются на разъединители и заземлители:
— специальных исполнений (например, разъединители с ограничителями перенапряжения, а также штепсельные, со встроенными предохранителями, для комплектных распределительных устройств с элегазовой изоляцией)*;
— для работы в пожаро-, взрывоопасных помещениях (например в газовых шахтах)*;
— для частых коммутационных операций*;
— для работы при сильной тряске, вибрациях или ударах (например, на экскаваторах, драгах)*.
* Дополнительные требования на специальные типы изделий должны быть установлены в технических документах.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты: