как определить направление силы действующей на проводник с током в магнитном поле
Сила Ампера. Сила Лоренца.
Сила Ампера.
Действие магнитного поля на проводник с током
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.
Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:
F=B . I . ℓ . sin α — закон Ампера.
Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.
Действие магнитного поля на движущийся заряд.
Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:
Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным.
Если вектор v частицы перпендикулярен вектору В , то частица описывает траекторию в виде окружности:
Роль центростремительной силы играет сила Лоренца:
При этом радиус окружности: 
а период обращения
не зависит от радиуса окружности!
Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).
Действие магнитного поля на рамку с током
На рамку действует пара сил, в результате чего она поворачивается.
Устройство электроизмерительных приборов
1.Магнитоэлектрическая система:
5 — подшипники и ось; 6 — стрелка; 7 — шкала (равномерная)
Принцип действия: взаимодействие рамки с током и поля магнита.
Угол поворота рамки и стрелки
2. Электромагнитная система:
Принцип действия: взаимодействие магнитного поля катушки со стальным сердечником, где Fмаг
Использование силы Лоренца
В циклотроне магнитное поле управляет движением заряженной частицы. Период обращения частицы в циклотроне: 
Т не зависит от R и υ!
Электрическое поле между дуантами разгоняет частицы, а магнитное поворачивает поток частиц. В момент попадания частиц в ускоряющий промежуток направление электрического поля меняется так, чтобы оно всегда увеличивало скорость частиц.
Схема действия масс-спектрографа Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные ( B1 ) и электрические ( E ) поля. Тогда 
Т.к. 

можно определить удельный заряд частицы, заряд. массу.
Сила Ампера
теория по физике 🧲 магнетизм
Сила Ампера — сила, которая действует на проводник с током, помещенный в магнитное поле.
Модуль силы Ампера обозначается как FA. Единица измерения — Ньютон (Н).
Математически модуль силы Ампера определяется как произведение модуля вектора магнитной индукции B, силы тока I, длины проводника l и синуса угла α между условным направлением тока и вектором магнитной индукции:
Пример №1. Максимальная сила, действующая в однородном магнитном поле на проводник с током длиной 10 см, равна 0,02 Н. Сила тока в проводнике равна 8 А. Найдите модуль вектора магнитной индукции этого поля.
Определение направления силы Ампера
Направление вектора силы Ампера определяется правилом левой руки.
Правило левой руки
Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции → B входила в ладонь, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на отрезок проводника (направление силы Ампера).
Пример №2. В однородном магнитном поле находится рамка, по которой начинает течь ток (см. рисунок). Какое направление (вверх, вниз, влево, вправо, от наблюдателя, наблюдателю) имеет сила, действующая на нижнюю сторону рамки?
Так как в нижней стороне рамки ток направлен вправо, то четыре пальца левой руки нужно направить вправо. Саму левую руку при этом нужно расположить перпендикулярно плоскости рисунка ладонью вверх, чтобы в нее входили линии вектора магнитной индукции. Если отогнуть большой палец на прямой угол, то он покажет направление силы Ампера, действующей на нижнюю часть рамки. В данном случае она направлена в сторону от наблюдателя.
Работа силы Ампера
Проводники, на которые действует сила Ампера, могут перемещаться под действием этой силы. В этом случае говорят, что сила Ампера совершает работу. Из курса механики вспомним, что работа равна:
F — сила, совершающая работу, s — перемещение, совершенное телом под действием этой силы, α — угол между вектором силы и вектором перемещения.
Отсюда работа, совершаемая силой Ампера, равна:
α — угол между вектором силы и вектором перемещения, β — угол между условным направлением тока и вектором магнитной индукции.
Пример №3. Проводник длиной l = 0,15 м перпендикулярен вектору магнитной индукции однородного магнитного поля, модуль которого B = 0,4 Тл. Сила тока в проводнике I = 8 А. Найдите работу, которая была совершена при перемещении проводника на 0,025 м по направлению действия силы Ампера.
Так как проводник расположен перпендикулярно вектору магнитной индукции, и поле однородно, то синус угла между ними равен «1». Так как направление перемещение проводника совпадает с направлением действия силы Ампера, то косинус угла между ними тоже равен «1». Поэтому формула для вычисления работы силы Ампера принимает вид :
Подставим известные данные:

Алгоритм решения
Решение
В точке А вектор → B 1 направлен в сторону от наблюдателя, а вектор → B 2 — к наблюдателю. Так как второй проводник расположен ближе к третьему, создаваемое им магнитное поле в точке А более сильное (силы тока во всех проводниках равны по условию задачи). Следовательно, результирующий вектор → B направлен к наблюдателю.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Правило правой и левой руки в физике
Правило левой и правой руки в физике — описание
История открытия, правило буравчика
Связь между электричеством и магнетизмом обнаружили только в XIX веке. С тех пор люди имеют представление о магнитном поле. Первым его обнаружил датский физик Х.Эрстед. После его открытия многими учеными была проведена серия опытов, в ходе которых было открыто, что поле это широкого спектра действия (может выходить за рамки объекта) и имеет круговой характер движения. Далее исследовали направление этого движения. Определили, что оно может быть направлено в разные стороны в зависимости от расположения полюсов и сил, действующих на проводник. Так были открыты и сформулированы правила правой и левой руки. Одно из них определяет направление магнитных линий, другое — действующих на проводник сил.
Магнитное поле было принято обозначать специальными магнитными линиями (или линиями магнитной индукции): чем «гуще» линии, тем больше значение действующей силы магнитного поля.
Магнитные линии замкнутые и не свиваются.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Зная направление линий, можно определить направление вектора магнитной индукции, и наоборот. Потому что вектор направлен по касательной к каждой точке магнитных линий.
Хоть определение правила буравчика (винта\правой руки) и сформулировано ученым-физиком Петром Буравчиком, название происходит от специального инструмента с «правой» резьбой — буравчика или винта. Было замечено, что при вкручивании его в землю резьба движется по часовой стрелке, то есть вправо. Так было определено направление силовых линий магнитного поля.
Правило левой руки было введено следом. Оно помогает определить направление воздействия на сам проводник.
Правило правой руки, определение
Если направление движения буравчика совпадает с направлением тока внутри проводника, то ручка буравчика показывает направление вектора магнитной индукции.
Как пользоваться:
Ток всегда течет от точки с большим потенциалом к точке с меньшим, то есть от «плюса» к «минусу».
Смысл правила
Легко понять правило буравчика на примере обычного штопора. Он и выступает в роли буравчика как специального инструмента с резьбой, направленной вправо (вкручивается по часовой стрелке).
Применение
Можно использовать не только в электричестве — для определения направления магнитного поля. Также помогает определять угловую скорость.
Правило правой руки для соленоида
Соленоидом называется катушка с большим количеством витков. Постоянный, направляемый магнит.
Формулировка
Если направление тока в соленоиде совпадает с направлением пальцев правой руки, то вытянутый большой палец покажет направление вектора магнитной индукции для этого соленоида.
Правило левой руки
Нельзя объединять и путать с правилом буравчика. Их применяют с разными целями.
Что определяет
Определяет направление двух сил:
Сила Лоренца, применение, формула
Применение: нужно расположить три пальца левой руки (указательный, большой средний) под прямым углом друг к другу. Тогда большой покажет направление силы Лоренца, указательный (направленный вниз) определит направление магнитного поля, а средний — направление тока в проводнике.
Сила Ампера, формула
Если четыре вытянутых пальца левой руки расположены в направлении тока в проводнике, а вектор магнитной индукции входит в ладонь, то большой палец, направленный под прямым углом, покажет направление силы Ампера магнитного поля, действующей на данный проводник.
\(F_A=B\times J\times L\sin\left(\alpha\right)\)
Примеры задач в физике, электротехнике
Пример 1
Простые задачи по физике на определение направления силы Ампера по правилу левой руки.
Задача
Дан магнит: слева север, справа юг. Куда направлена сила Ампера?
Решение
Пример 2
Теперь север расположен справа, а юг слева.
Решение: ориентируясь на предыдущую задачу, можно сразу сделать вывод, что здесь сила Ампера будет направлена вверх. Либо снова проверить это, расположив правую руку по правилу левой руки. Отмечаем направление:
Более сложные задачи.
Пример 3
Задача
Определите силу, с которой однородное магнитное поле действует на проводник длиной 20 см, если сила тока в нем 300 мА, расположенный под углом 45º к вектору магнитной индукции. Магнитная индукция составляет 0,5 Тл.
Решение
\(F_A=B\times J\times L\sin\left(\alpha\right)\)
Пример 4
Задача
Определить силу, оказывающую действие на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45º к вектору магнитной индукции.
Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током
1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.
При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.
Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.
Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.
Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.
Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой \( B \) . Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.
2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.
Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.
Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.
3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.
Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).
Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).
4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.
Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.
Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.
Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.
5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).
Если в поле подковообразного магнита поместить проводник длиной \( l \) , подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.
Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника \( l \) и силе тока \( I \) в проводнике: \( F\sim Il \) . Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции \( B \) . Соответственно, \( F=BIl \) .
Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.
В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.
Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: \( B=\frac
Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.
Единица магнитной индукции \( [В] = [F]/[I][l] \) . \( [B] \) = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.
Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).
6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки \( ab \) , противоположна силе, действующей на сторону \( cd \) .
Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.
В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.


















































