Какие параметры окружающей среды нормируются как параметры микроклимата

Гигиенические нормативы параметров микроклимата жилых помещений

Гигиенические нормативы параметров микроклиматажилых помещений

Здоровье и работоспособность человека в значительной степени определяются условиями микроклимата и воздушной среды жилых и общественных зданий.

Воздействие комплекса микроклиматических факторов отражается на теплоощущении человека и обусловливает особенности физиологических реакций организма. Температурные воздействия, выходящие за пределы нейтральных колебаний, вызывают изменения тонуса мышц, периферических сосудов, деятельности потовых желез, теплопродукции. При этом постоянство теплового баланса достигается за счет значительного напряжения терморегуляции, что отрицательно сказывается на самочувствии, работоспособности человека, его состоянии здоровья.

Тепловое состояние, при котором напряжение системы терморегуляции незначительно, определяется как тепловой комфорт. Он обеспечивается в диапазоне оптимальных микроклиматических условий, в пределах которого отмечается наименьшее напряжение терморегуляции и комфортное теплоощущение.

Постановлением Главного государственного санитарного врача РФ от 10 июня 2010г. N64 утверждены санитарно-эпидемиологические правила и нормативы СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях вступившие в законную силу с 15 августа 2010года. Указанными санитарно-эпидемиологическими правилами определены оптимальные и допустимые параметры микроклимата жилых помещений.

Оптимальные и допустимые нормы
температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий

Наименование помещений

Температура воздуха, °С

Результирующая температура, °С

Относительная влажность, %

Скорость движения воздуха, м/с

Источник

Нормирование параметров воздуха в помещениях

Параметры воздушной среды в помещениях, влияющие на самочувствие и здоровье людей, определяются микроклиматом и наличием в ее составе вредных веществ.

Рабочей зоной считается пространство высотой 2м от уровня пола или площадки, в котором находятся места постоянного или непостоянного пребывания рабочих. Постоянным считается рабочее место, на котором работающий находится бóльшую часть (более 50 % или более 2 ч непрерывно) своего рабочего времени. Параметры микроклимата в жилых, общественных и административно-бытовых помещениях определяются строительными нормами СНиП 41–01–2003 «Отопление, вентиляция и кондиционирование воздуха».

Нормирование параметров микроклимата

Гигиеническими нормами регламентируются следующие параметры микроклимата в рабочей зоне производственных помещений: температура, относительная влажность и скорость движения воздуха, а также температура поверхностей окружающих тело человека конструкций и предметов (стены, полы и потолки помещения, производственное оборудование, предметы труда и т. п.). Нормирование осуществляется с учетом времени года и интенсивности производимой человеком работы. Согласно ГОСТ 12.1.005–88, различают холодный и теплый периоды года.

Иногда рассматривают также переходной период, характеризуемый среднесуточной температурой наружного воздуха +10ºС. Исходя из общих энергозатрат организма при учете интенсивности труда все виды работ разделяют на три категории:

Для рабочей зоны производственного помещения согласно действующим нормативным документам устанавливаются оптимальные и допустимые параметры микроклимата. Оптимальные (рекомендуемые) параметры представляют собой наиболее благоприятные условия для наилучшего самочувствия человека (критерий комфорта) или для правильного протекания различных технологических процессов (технологический критерий). Оптимальные параметры микроклимата по критерию технологичности регламентируются отраслевыми документами. Так, для цехов точного машиностроения оптимальная температура составляет 20 ± 0,5 ºС, а оптимальная относительная влажность – 45…50 %. Оптимальные параметрымикроклимата по критерию комфорта (табл. 1.1) обеспечивают состояние теплового баланса при взаимодействии человека с окружающей средой, не вызывают напряжений в работе системы терморегуляции организма и создают предпосылки для высокого уровня работоспособности. Такие параметры, например, необходимо соблюдать в производственных помещениях, где выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением (в кабинах, на пультах и постах управлений технологическими процессами, в залах вычислительной техники).

Оптимальные значения параметровмикроклимата на рабочих местах производственных помещений

Скорость движения
воздуха, м/с, не более0,10,10,20,20,3Относительная влаж-
ность воздуха, %40–60

Оптимальные параметры микроклимата обеспечиваются, как правило, системами кондиционирования воздуха. Допустимые (обязательные) параметры микроклимата устанавливаются в тех случаях, когда по техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные условия. Допустимые параметры микроклимата устанавливаются для 8-часовой рабочей смены при условиях, что они не должны вызывать нарушений состояния здоровья человека, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности (табл. 1.2).

Допустимые значения параметровмикроклимата на рабочихместах производственных помещений по СанПиН 2.2.4.548–96

для tв tопт,
не болееХолодныйIа

IIа
IIб
III20,0–21,9
19,0–20,9
17,0–18,9
15,0–16,9
13,0–15,924,1–25,0
23,1–24,0
21,1–23,0
19,1–22,0
18,1–21,015–75
15–75
15–75
15–75
15–750,1
0,1
0,1
0,2
0,20,1
0,2
0,3
0,4
0,4ТеплыйIа

IIа
IIб
III21,0–22,9
20,0–21,9
18,0–19,9
16,0–18,9
15,0–17,925,1–28,0
24,1–28,0
22,1–27,0
21,1–27,0
20,1–26,015–75
15–75
15–75
15–75
15–750,1
0,1
0,1
0,2
0,20,2
0,3
0,4
0,5
0,5

При температуре воздуха на рабочих местах t в ≥ 25 ºС относительная влажность воздуха φ не должна выходить за пределы: 70 % – при t в = 25 ºС; 65 % – при t в = 26 ºС; 60 % – при t в = 27 ºС; 55 % – при t в = 28 ºС.
При температуре воздуха, выходящей за допустимые пределы, время пребывания на рабочих местах должно быть ограничено так, чтобы среднесменная температура воздуха, соответствующая нахождению работающих на рабочих местах и в местах отдыха, не выходила за пределыдопустимых норм, указанных в табл. 1.2.

Среднесменную температуру воздуха в t рассчитывают по формуле

где n – число мест работы и отдыха за смену; t 1, t 2,…, t n и τ 1, τ 2, …, τ n – соответственно температура воздуха, ºС, и время пребывания, ч, на местах работы или отдыха; 8 – продолжительность рабочей смены, ч. Для непроизводственных помещений допустимые значения параметров микроклимата приведеныв табл. 1.3.

Допустимые значения параметровмикроклимата в обслуживаемой зоне жилых, общественных и административно-бытовых помещений по СНиП 41–01–2003

Период годаТемпература воздуха, oСОтносительная влажность воздуха, %, не болееСкорость движения воздуха, м/с,не более
ТеплыйНе более чем на 3 ºС выше расчетной температуры наружного воздуха
(параметр А)*
65***0,5
Холодный18**–22650,2

Для помещений с постоянным пребыванием людей температура должна быть не более 28 oС, а в районах с расчетной температурой наружного воздуха 25 oСи выше ― не более 33 oС.

**Для помещений с пребыванием людей в верхней одежде следует принимать температуру 14 oС.
***В районах с расчетной влажностью наружного воздуха более 75 % допускается принимать влажность до 75 %.

Представленные в табл. 1.3 нормы установлены для людей, находящихся в помещении более 2 ч непрерывно. Гигиеническое нормирование содержания вредных веществ в воздухе рабочей зоны. Вредными являются вещества, которые при контакте с организмом человека могут вызвать производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые как в период работы, так и в отдаленные сроки жизни настоящего или последующих поколений. Выделяющиеся на производстве вредные газыи парыобразуют с воздухом газо-и паровоздушные смеси, а жидкие и твердые частицы – аэрозоли. Аэрозоли называют туманами, если они образованы каплямижидкости, и пылями, если они образованы твердыми частицами.

Основным нормирующим показателем содержания вредных веществ в воздухе рабочей зоны являются их предельно допустимые концентрации (ПДК). ПДК– это максимальное содержание вредного вещества, выраженное в миллиграммах, в одном кубическом метре воздуха, которое при ежедневной (кроме выходных дней) работе в течение 8 ч или другой продолжительности, но не более 41 ч в неделю в течение всего рабочего стажа, не может вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования в процессе работы или отдаленные срокижизни настоящего или последующих поколений.

Вредные вещества по степени опасности разделены на четыре класса:

По характеру воздействия на организм человека вредные вещества подразделяют на общетоксические, вызывающие отравление всего организма или поражающие отдельные его органы (свинец, ртуть, мышьяк, бензол, толуол и др.); раздражающие, вызывающие раздражение слизистых оболочек дыхательных путей, глаз, кожи (кислоты, щелочь, хлор, фтор-, серо- и азотсодержащие соединения); сенсибилизирующие, действующие как аллергены (платина, альдегиды, различные растворители, лаки на основе нитросоединений и др.); канцерогенные, вызывающие злокачественные опухоли (мазут, гудрон, битум, хром, никель, асбест и др.); мутагенные, приводящие к генетическим изменениям (свинец, марганец, формальдегид, радиоактивные изотопы); влияющие на репродуктивную (детородную) функцию (ртуть и ее соединения, свинец, стирол, бензол, сероуглерод, радиоактивные изотопы).

Вредные вещества, которые влияют на одни и те же системы организма, называют однонаправленными. В противном случае вредные вещества являются разнонаправленными. Эта особенность имеет важное значение для оценки совместного воздействия вредных веществ на организм человека. При действии однонаправленных веществ их концентрации должны удовлетворять условию

Для разнонаправленных веществ это условие упрощается и сводится к тому случаю, когда бы они действовали раздельно: qi ≤ ПДКi

Гигиеническое нормирование содержания углекислого газа в воздухе помещения

Углекислый газ (СО2) относится к основным видам вредных выделений в жилых, общественных и производственных помещениях. Нередко отмечающиеся в закрытых помещениях духота и нехватка кислорода в первую очередь связаны с повышением содержания в воздухе углекислого газа. В состоянии покоя организм человека поглощает около 20 л кислорода в час и выделяет примерно 20 л углекислого газа. Количество выделяемого углекислого газа зависит от возраста человека и характера выполняемой работы (табл. 1.5).

Количество углекислого газа (СО2), выделяемого организмом человека

Единица
измерения
ВзрослыеДети
При физической работеВ состоянии
покоя
тяжелойлегкой
г/ч68453518
л/ч45302312

Углекислый газ играет важную роль в функционировании организма, участвуя в регуляции дыхания, кровообращения, газообмена. При недостатке углекислого газа, что соответствует его концентрации менее 0,003 %, расстраивается нормальное функционирование указанных органов. При избытке углекислого газа, когда его концентрация доходит до 1,5%, ощущаются головокружение и головные боли, при концентрациях 5…6 % отмечаются значительное учащение дыхания, тошнота, понижение температуры тела. При дальнейшем повышении концентрации газа возможно наступление смерти от остановки дыхания. Концентрация углекислого газа в наружном воздухе зависит от типа местности (табл. 1.6).

Концентрация углекислого газа (СО2) в наружном воздухе

Единица измеренияТип местности
сельскаяпоселкигорода
г/м30,60,70,9
л/м30,40,50,6

Допустимая концентрация углекислого газа СО2 в помещении зависит от вида помещения и продолжительности пребывания в нем людей (табл. 1.7).

Допустимые концентрации углекислого газа (СО2) в воздухе помещений

Единица
измерения
Помещения с пребыванием людей
постояннымпериодическимкратковременным
в жилых
домах
в больницах
г/м31,51,01,753,0
л/м31,00,71,252,0

Нормализацию газового состава воздуха в помещении осуществляют путем организации притока наружного воздуха. Действующими санитарными нормами в зависимости от удельного объема помещения регламентируется подача на одного человека 20…60 м3/ч свежего приточного воздуха.

Расчетные параметры наружного воздуха

В качестве расчетных параметров наружного воздуха используют так называемые параметры А и Б. Эти параметрыопределяют следующим образом.

Для холодного периода года:

Для теплого периода года:

Расчетные значения параметров наружного воздуха для Москвы

Период
года
ПараметрыТемпература воздуха,
ºС
Удельная
энтальпия,
кДж/кг
Скорость
ветра,
м/с
Среднесуточная
амплитуда температуры,
ºС
Барометрическое
давление,
кПа
ТеплыйА22,349,4110,499
Б28,554199
ХолодныйА–15–11,44,799
Б–26–25,3499

Значения параметров А и Б для большого числа городов приведены в СНиП 2.01.01–82 «Строительная климатология и геофизика». Для Москвы с расчетной географической широтой 56º с. ш. эти значения представлены в табл. 1.8.

Источник

Новый ГОСТ на параметры микроклимата жилых и общественных зданий

Е. Г. Малявина, доцент кафедры «Отопление и вентиляция» МГСУ

Здоровье и работоспособность человека в значительной степени определяются условиями микроклимата и воздушной среды жилых и общественных зданий. Отечественными и зарубежными гигиенистами [1, 2] установлена связь между микроклиматом в жилище и на рабочем месте и состоянием здоровья людей. Обеспечение заданных показателей микроклимата является одной из основных задач специалистов по строительной теплофизике, отоплению, вентиляции и кондиционированию воздуха. За рубежом исследования теплоощущений человека в помещении легли в основу большого числа национальных и международных стандартов на тепловой микроклимат и параметры воздушной среды [3, 4, 5].

Для промышленных зданий параметры внутреннего воздуха нормируются ГОСТ’ом 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Значения параметров воздуха в нем заданы в зависимости от энергозатрат человека (для выделенных категорий работ) для теплого и холодного периодов года на оптимальном и допустимом уровнях. Эти же данные приведены в СНиП

2.04.05-91*. Имеется также относительно недавно принятый на федеральном уровне Госкомсанэпиднадзором России в Государственную систему санитарно-эпидемиологического нормирования Российской Федерации СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

В этом документе кроме параметров внутреннего воздуха нормируются также температуры поверхностей и допустимые величины интенсивности теплового облучения рабочих мест от производственных источников. Не обсуждая сейчас достоинств и недостатков СанПиН’а, заметим, что он, по существу, явился первым отечественным нормативным документом, комплексно охватывающим тепловые микроклиматические воздействия на человека.

Появление ГОСТ’а 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях» [6], в котором реализован комплексный подход к нормированию показателей микроклимата, несомненно следует считать положительным моментом.

В основу ГОСТ’а были положены принципы сохранения здоровья и работоспособности людей при различных видах деятельности. Гигиенические нормативы отражают современные научные и технические знания, получаемые при изучении реакций человека на воздействие тех или иных факторов окружающей среды. В них учтены современные теплотехнические требования к ограждающим конструкциям зданий и системам отопления и вентиляции.

ГОСТ 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях» впервые введен в действие Постановлением N1 Государственного комитета РФ по строительной, архитектурной и жилищной политике от 6 января 1999 года с марта текущего года. Стандарт разработан ГПКНИИ СантехНИИпроект, НИИстройфизики, ЦНИИЭПжилища, ЦНИИЭП учебных зданий, НИИ экологии человека и гигиены окружающей среды им. Сысина, Ассоциацией инженеров АВОК. 11 декабря 1998 года стандарт принят Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС), объединяющей органы Государственного управления строительством стран СНГ.

Значения оптимальных и допустимых норм микроклимата в обслуживаемой зоне помещений (в установленных расчетных параметрах наружного воздуха) приведены в ГОСТ’е для следующих показателей: температура, скорость движения, относительная влажность воздуха; результирующая температура помещения; локальная асимметрия результирующей температуры.

Результирующую температуру можно рассчитать, измерив температуры воздуха и всех поверхностей, обращенных в помещение, а можно измерить шаровым термометром. Первый способ может оказаться трудно выполнимым, так как в стандарте не уточняется, как измерить температуру и площадь поверхности отопительного прибора, особенно если у него оребренная поверхность.

Для исключения отрицательного воздействия на человека одновременного влияния нагретых и охлажденных поверхностей ограничивается локальная асимметрия результирующей температуры помещения, которая определяется как «разность результирующих температур в точке помещения, определенных шаровым термометром для двух противоположных направлений».

В ГОСТ’е локальная асимметрия результирующей температуры помещения определяется как разность температур, измеренных в двух противоположных направлениях шаровым термометром с рекомендуемым диаметром сферы 150 мм. Представляется, что более жесткая оценка локальной асимметрии радиационной температуры относительно противоположных сторон плоской элементарной площадки точнее описывает процесс теплообмена неблагоприятно расположенных поверхностей на теле человека, чем относительно полусферы диаметром 15 см. Например, площадки на груди и спине человека могут ощущать одновременное переохлаждение и нагрев. Оценка этого теплоощущения не может выполняться с использованием прибора, интегрирующего сферой температуры всех окружающих поверхностей. Шаровой термометр подходит скорее для оценки радиационной и результирующей температуры в центре помещения и, на мой взгляд, не годится для измерения такой характеристики как асимметрия радиационной и результирующей температуры, которые должны оцениваться на границе обслуживаемой зоны [8].

Связь между показателями PMV и PPD устанавливается следующими данными, приведенными в таблице 1.

Таблица 1
Распределение индивидуальных тепловых ощущений
(по данным экспериментов с участием 1300 человек)
при различных тепловых условиях
Значения
теплоощуения,

PMV

Вероятность
неприятного
ощущения

PPD, %

Процент людей, оценивающих
обстановку не хуже чем
КомфортПрохладно
или тепло
Слегка холодно
или слегка жарко
+27552570
+125277595
055595100
-125277595
-27552570

%Оптимальные сочетания параметров2020450,200,155,42020300,200,075,11917450,20-0,185,61917300,20-0,256,22115450,20-0,115,22115300,20-0,195,71921450,200,125,21921300,200,045,02119450,200,185,62119300,200,095,1Допустимые сочетания параметров1818300,3-0,318,21818600,3-0,358,71816300,3-0,7416,81816600,3-0,8519,32315300,3-1,1127,52315600,3-1,1528,62321300,30,449,72321600,30,5511,9

Из таблицы видно, что оптимальные сочетания параметров полностью отвечают этому понятию и по ISO 7730. Что касается допустимых сочетаний, то их крайние значения могут приводить к тому, что значительный процент людей будет ощущать дискомфорт.

В заключение хочется выразить удовлетворение по поводу вышедшего очень нужного документа, который в дальнейшем несомненно будет развиваться. При этом было бы желательно согласовать все нормируемые показатели, а также сблизить подходы к оценке микроклимата в нормативных документах, выпускаемых различными ведомствами.

Литература

1. Губернский Ю.Д., Кореневская Е.И. Гигиенические основы кондиционирования микроклимата жилых и общественных зданий. М.:»Медицина», 1978.-192 с.

2. Банхиди Л. Тепловой микроклимат помещений: расчет комфортных параметров по теплоощущениям человека / Пер. с венг. В.М.Беляева; Под ред. В.И.Прохорова и А.Л.Наумова.-.: Стройиздат, 1981.-248 с.

3. Межгосударственный стандарт. Здания жилые и общественные. Параметры микроклимата в помещениях. ГОСТ 30494-96. Госстрой России, ГУП ЦПП, 1999.

5. ASHRAE Handbook of Fundamentals, 1993.

6. Standard ASHRAE 55, 1992.

7. Сканави А.Н. Конструирование и расчет систем водяного и воздушного отопления зданий. М.:Стройиздат, 1983.-304 с.

8. Богословский В.Н. Строительная теплофизика. М.:Высш. школа, 1982.-415 с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *