какие виды систем управления существуют
Система управления
Структура управления — систематизированный (строго определенный) набор средств сбора сведений о подконтрольном объекте и средств воздействия на его поведение с целью достижения определённых целей. Объектом системы управления могут быть как технические объекты, так и люди. Объект системы управления может состоять из других объектов, которые могут иметь постоянную структуру взаимосвязей. Системы управления с участием людей как объектов управления зачастую называют системами менеджмента.
Техническая структура управления — устройство или набор устройств для манипулирования поведением других устройств или систем.
Объектом управления может быть любая динамическая система или её модель. Состояние объекта характеризуется некоторыми количественными величинами, изменяющимися во времени, то есть переменными состояния. В естественных процессах в роли таких переменных может выступать температура, плотность определенного вещества в организме, курс ценных бумаг и т. д. Для технических объектов это механические перемещения (угловые или линейные) и их скорость, электрические переменные, температуры и т. д. Анализ и синтез систем управления проводится методами специального раздела математики — теории управления.
Структуры управления разделяют на два больших класса:
Содержание
Типы систем автоматического управления
Система автоматического управления, как правило, состоит из двух основных элементов — объекта управления и управляющего устройства.
По цели управления
Объект управления — изменение состояния объекта в соответствии с заданным законом управления. Такое изменение происходит в результате внешних факторов, например вследствие управляющих или возмущающих воздействий.
Системы автоматического регулирования
Системы экстремального регулирования
Способны поддерживать экстремальное значение некоторого критерия (например, минимальное или максимальное), характеризующего качество функционирования данного объекта. Критерием качества, который обычно называют целевой функцией, показателем экстремума или экстремальной характеристикой, может быть либо непосредственно измеряемая физическая величина (например, температура, ток, напряжение, влажность, давление), либо КПД, производительность и др.
Адаптивные системы автоматического управления
Служат для обеспечения желаемого качества процесса при широком диапазоне изменения характеристик объектов управления и возмущений.
По виду информации в управляющем устройстве
Замкнутые САУ
В замкнутых системах автоматического регулирования управляющее воздействие формируется в непосредственной зависимости от управляемой величины. Связь выхода системы с его входом называется обратной связью. Сигнал обратной связи вычитается из задающего воздействия. Такая обратная связь называется отрицательной.
Разомкнутые САУ
Сущность принципа разомкнутого управления заключается в жестко заданной программе управления. То есть управление осуществляется «вслепую», без контроля результата, основываясь лишь на заложенной в САУ модели управляемого объекта. Примеры таких систем : таймер, блок управления светофора, автоматическая система полива газона, автоматическая стиральная машина и т. п.
В свою очередь различают:
Характеристика САУ
В зависимости от описания переменных системы делятся на линейные и нелинейные. К линейным относятся системы, состоящие из элементов описания, которые задаются линейными алгебраическими или дифференциальными уравнениями.
Если все параметры уравнения движения системы не меняются во времени, то такая система называется стационарной. Если хотя бы один параметр уравнения движения системы меняется во времени, то система называется нестационарной или с переменными параметрами.
Системы, в которых определены внешние (задающие) воздействия и описываются непрерывными или дискретными функциями во времени относятся к классу детерминированных систем.
Системы, в которых имеет место случайные сигнальные или параметрические воздействия и описываются стохастическими дифференциальными или разностными уравнениями относятся к классу стохастических систем.
Если в системе есть хотя бы один элемент, описание которого задается уравнением частных производных, то система относится к классу систем с распределенными переменными.
Системы, в которых непрерывная динамика, порождаемая в каждый момент времени, перемежается с дискретными командами, посылаемыми извне, называются гибридными системами.
Примеры систем автоматического управления
В зависимости от природы управляемых объектов можно выделить биологические, экологические, экономические и технические системы управления. В качестве примеров технического управления можно привести:
Виды систем управления
Понятие управления
Поскольку в следующей лекции разговор пойдет о системе блокчейн, в этой лекции будут рассмотрены разновидности систем управления. Уникальность блокчейн состоит в том, что это система относится к распределенным системам. Поэтому сначала необходимо понять, как работают разные типы систем, и определить их плюсы и минусы. Но прежде всего следует уяснить, что такое «управление». Для этого термина существуют общие определения, которые можно найти в Интернете или в различных словарях, например:
Три системы управления, о которых будет рассказано дальше, отличаются друг от друга наличием одного или нескольких центров управления или же их отсутствием.
Централизованные системы
Централизованные системы имеют только одну точку управления, в которой сосредоточен весь контроль за системой ( рис. 5.1). Все процессы выполняются только в этой точке, в ней же принимаются и все решения. Однако это делает систему чрезвычайно подверженной падениям: любой перебой – и этот единственный центр управления может обрушить всю систему.
Плюсы централизованной системы:
Минусы централизованной системы:
Примеры централизованных систем: банковские системы; франшизы предприятий общественного питания («МакДональдс»); центральный процессор сервера.
Децентрализованные системы
Децентрализованные системы – системы, в которых существует несколько точек управления и полномочия диверсифицированы ( рис. 5.3). Это делает систему менее чувствительной к сбоям, так как выход из строя одной точки управления не приведет к падению всей системы. Иерархия такой системы больше приближена к горизонтальной по сравнению с централизованной системой.
Плюсы децентрализованной системы:
Минусы децентрализованной системы:
Распределенные системы
В распределенных системах любая точка – это точка управления ( рис. 5.5). Поэтому такие системы фактически невосприимчивы к падениям. Это не значит, что их не будут взламывать, однако, чтобы вывести из строя такую систему, злоумышленник должен взять под контроль или изменить более 50% точек управления. Затраты на то, чтобы сделать подобное самостоятельно, сведут на нет большую часть прибыли и сделают экономически нецелесообразным попытки взлома. Иерархия таких систем полностью горизонтальна. Каждая точка управления равна любой другой точке управления, и любой субъект, любой участник системы является точкой управления. Итак, все равны, что и приводит к горизонтальной иерархии.
Плюсы распределенной системы:
Минусы распределенной системы:
Примеры распределенных систем: криптовалюты; сети блокчейн.
В следующей лекции будут рассмотрены основы системы блокчейн, которую называют «самой революционной технологией века».
Виды систем управления
Выделяют два вида систем управления:
Разомкнутые – без обратной связи;
Замкнутые – с обратной связью.
Различаю также многосвязные, многоконтурные системы управления. По характеру приспособления к изменяющимся условиям выделяют адаптивные системы управления.
Информационная система может быть автономной и может встраиваться в систему управления как подсистема, образуя автоматизированную систему управления отдельными частями и процессами.
Выделяют сосредоточенные и распределенные информационные системы управления.
Управляющая часть и объект управления взаимодействуют в информационном пространстве управления.
Важнейшее значение имеют технологии защиты информационного пространства управления от преднамеренных и непреднамеренных угроз, а также технологии правовых процессов в информационном пространстве управления.
Все процессы управления и взаимодействия с внешней средой происходят в среде управления.
Различают информационные ресурсы, поступающие из внешней среды – входная информация, и информационные ресурсы, выдаваемые во внешнюю среду – выходная информация.
Входная информация содержит потоки заданий, потоки критериев и потоки нормативов.
1.3.1. Управление в технических системах
Применение технических средств для облегчения физического труда человека называется механизацией. Механизация повышает эффективность физического труда человека. По мере роста механизации возрастает значимость интеллектуального труда человека.
Содержанием интеллектуального труда является обработка информации, анализ процессов и явлений окружающего мира, создание нового знания.
Появление вычислительных машин положило начало автоматизации интеллектуального труда человека. Автоматизация является продолжением механизации. Механизация охватывает процессы получения, передачи, преобразования и использования энергии. Автоматизация – процессы получения, передачи, преобразования, накопления и использования информации.
Рис. 1.2. Значимость видов труда
Для осуществления различных технологических, производственных, организационных и экономических процессов необходимо, чтобы величины, которые характеризуют эти процессы, удовлетворяли определенным условиям.
Так, например, в энергосистемах должны поддерживаться на постоянном уровне величины напряжения и частоты, в космонавтике необходимо обеспечить движение космического корабля в пространстве по заданной траектории. В экономике необходимо обеспечивать устойчивый равновесный рост.
Первоначально автоматизация охватывала управление техническими системами. Например, автопилоты, автоматические системы коммутации и т.п.
В таких системах допустима самая высокая степень автоматизации управления. Они могут функционировать без участия человека, не считая запуска, контроля и ремонта. Такие системы управления называются автоматическими.
Разработка автоматических система управления явилась стимулом для проведения фундаментальных исследований и построения строгой теории автоматического управления (ТАУ). Понятия и представления, рожденные при разработке ТАУ, стали основополагающими в теории управления.
Потребности промышленного производства ставили задачи управления все более сложными процессами и системами, что явилось серьезным толчком развития представлений о системности, системном подходе.
В рамках классической теории управления выделяется совокупность процессов и структурных элементов обеспечивающих процесс управления. Эта совокупность называют система управления. Функционирование системы управления отождествляется с процессом управления и описывается следующим образом.
Система управления получает:
— информацию Ic о текущем состоянии объекта управления (ОУ);
— информацию Iц о том, в каком состоянии должен находиться ОУ.
Отклонения ОУ от заданного состояния происходят под воздействием внешних возмущений V.
В результате сравнения информации Ic и Iц в управляющем органе (УО) вырабатывается управляющая информация Iу, которая передается на исполнительный орган (ИО).
ИО вырабатывает управляющее воздействие U, которое ликвидирует отклонение состояния ОУ.
Рис 1.3. Управление с точки зрения теории автоматического управления
1.3.2. Организационное управление
С развитием вычислительной техники и математических методов автоматизация распространилась на управление объектами социальной природы.
Управления этого типа принципиально не может быть автоматическими. Объясняется это рядом причин:
· сложность объектов социальной природы не позволяет разработать формальные процедуры вывода параметров управляющего воздействия;
· субъект управления является составным элементом объекта управления;
· исполнительные орган не является техническим устройством, он также является элементом объекта управления;
· социальный объект имеет очень разносторонние связи и отношения, что иногда трудно его выделить из внешней среды, однозначно описать границы объекта и внешней среды;
· время становится во многих случаях основным фактором оценки результатов управляющих воздействий.
Управление объектами социальной природы является автоматизированным.
Автоматизированное управление это процесс, при котором формальные процедуры выполняются людьми с использованием средств вычислительной техники (сбор, хранение, обработка информации, ведение документооборота, вычисления, анализ, моделирование сценариев развития), а принятие решения о способах, форме, динамике поведения выполняется уполномоченными людьми или группами людей. Они при этом самым непосредственным образом участвуют в процессе реализации принятого решения.
Целью автоматизации управления является эффективное использование всех видов «ресурсов». При этом достигается:
Повышение оперативности управления за счёт использования следующих базовых информационных процессов:
· предварительная обработка информации
· передача информации, шифрование и дешифрование информации,
· решение логических задач,
· оформление и размножение документов.
Снижение трудовых затрат на выполнение различных вспомогательных процессов. При управлении, трудовые затраты распределяются примерно следующим образом, как показано на рис. 1.4.
Повышение формализованности принимаемых решений. Принятие решений проходит на основе анализа и последующего имитационного моделирования развития ситуации с применением современного математического аппарата.
Эффект от автоматизации управления достигается не за счет уменьшения численности людей в системе управления, а за счет перераспределение специалистов:
· сокращается численность должностных лиц, занятых непосредственно управлением,
· увеличивается инженерный и технический персонал, обслуживающий технические средства.
Эффект автоматизации достигается за счёт своевременности и рациональности принимаемых решений.
Система управления организацией
Что такое система управления
Система управления — совокупность компонентов, образующих иерархию контуров циркуляции и преобразования данных в процессе реализации концепции управления, задачей которого является обеспечение соответствия действий принятому плану организации.
Признаками, согласно которым определенную систему причисляют к группе системы управления, являются:
Осуществление управления происходит при условии реально существующей и действующей системы, с помощью которой решают управленческие задачи. В целом, управление является разновидностью взаимоотношений участников системы:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В рамках организации роль субъекта управления или носителя власти может играть руководитель, делегирующий ответственность и полномочия на нижестоящих, согласно иерархии, менеджеров. Объектами управления могут являться подразделения организации, специалисты, ресурсы и т.д.
Система управления представляет собой комплекс элементов, которые взаимозависимы и взаимосвязаны между собой. Данные компоненты едины и образуют упорядоченную целостность. Основным трендом упорядочения системы управления является цель ее функционирования.
Компоненты системы управления:
Важным критерием оценки системы управления является сбалансированность и соответствие организованным целям. Такой комплекс должен быть контролируемый, отличаться гибкостью, адаптивностью.
Описание работы системы управления
Управляемая группа состоит из элементов, задействованных при создании материальных и духовных благ или предоставления услуг. К данному понятию относятся подчиненные. Управляющую группу создают для реализации всех функций, с помощью которых выполняются поставленные перед организацией задачи.
Неотъемлемым условием для реализации управленческой стратегии является наличие ресурсов:
Управляющая группа отвечает за координацию работы всех сотрудников с использованием технических средств таких, как связь, техника, а также несет ответственность за производство и дальнейшее совершенствование организации.
К данному направлению относят руководителей. Они подчинены старшему менеджеру. Количество руководителей определяется размерами штата сотрудников и организационной структурой.
Управляющие подсистемы включают несколько этапов:
Путем объединения перечисленных компонентов управления достигается цель организации. В любой концепции присутствует субъект и объект управления. Примерами объектов являются:
В качестве субъекта системы управления выступают разнообразные структуры управленческого персонала. Существует несколько форм координирования работы в организации:
Типы системы управления
Управленческие комплексы могут отличаться. Среди систем управления выделяют два типа:
Существенное отличие этих систем заключается в том, что для закрытой системы управления характерен блок управления в виде составной части этой системы, в отношении которой осуществляется управление. Основным критерием эффективности работы в случае открытой системы являются свойства, присущие управляющему устройству. К примеру, эффективность системы, которой управляет человек, определяется человеком. В ситуациях, когда процесс самой управляемой операции значительно влияет на ход управления, систему принято считать закрытой.
В закрытом типе системы управления присутствует обратная связь:
Не для всех закрытых систем представляется возможным производить коррекцию параметров. Некоторые информационные потоки представляют собой замкнутый контур.
Обратная связь основана на обратном воздействии итогов управления системы на процесс самого управления, либо применении данных, поступающих от объекта управления. Обратная связь может быть нескольких видов:
В случае положительной обратной связи усиливается действие выходного сигнала. Отрицательная обратная связь приводит к ослаблению входного сигнала. Положение системы ухудшается при положительной обратной связи. Восстановление равновесия наблюдается во время отрицательной обратной связи.
Виды систем управления
Рассматриваемые комплексы отличаются по ряду признаков. Исходя из характера управляющего воздействия, системы классифицируют по следующим категориям:
Параметры системы
Комплекс управления является неотъемлемой частью организации и представляет собой относительно самостоятельную систему в целом комплексе, составляющих организацию. С помощью системы управления выполняют взаимосвязанные манипуляции, формирующие и использующие организационные ресурсы для достижения ее цели.
Ключевыми параметрами систем являются:
Примеры систем управления
Примеры процесса целенаправленного воздействия на объект, которое необходимо для обеспечения работы объекта по конкретной программе, можно обнаружить в любых сферах деятельности.
К управляемым объектам относятся:
Управляющими объектами могут быть:
Введение в теорию автоматического управления. Основные понятия теории управления техническим системами
Публикую первую главу лекций по теории автоматического управления, после которых ваша жизнь уже никогда не будет прежней.
Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.
Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика привествуется.
1. Основные понятия теории управления техническими системами
1.1. Цели, принципы управления, виды систем управления, основные определения, примеры
Развитие и совершенствование промышленного производства (энергетики, транспорта, машиностроения, космической техники и т.д.) требует непрерывного увеличения производительности машин и агрегатов, повышения качества продукции, снижения себестоимости и, особенно в атомной энергетике, резкого повышения безопасности (ядерной, радиационной и т.д.) эксплуатации АЭС и ядерных установок.
Реализация поставленных целей невозможна без внедрения современных систем управления, включая как автоматизированные (с участием человека-оператора), так и автоматические (без участия человека-оператора) системы управления (СУ).
Определение: Управление – это такая организация того или иного технологического процесса, которая обеспечивает достижение поставленной цели.
Теория управления является разделом современной науки и техники. Она базируется (основывается) как на фундаментальных (общенаучных) дисциплинах (например, математика, физика, химия и т.д.), так и на прикладных дисциплинах (электроника, микропроцессорная техника, программирование и т.д.).
Любой процесс управления (автоматического) состоит из следующих основных этапов (элементов):
Для реализации Процесса Управления система управления (СУ) должна иметь:
Определение: Если система управления (СУ) содержит все перечисленные выше части, то она является замкнутой.
Определение: Управление техническим объектом с использованием информации о результатах управления называется принципом обратной связи.
Схематично такая система управления может быть представлена в виде:
Рис. 1.1.1 — Структура системы управления (СУ)
Если система управления (СУ) имеет структурную схему, вид которой соответствует рис. 1.1.1, и функционирует (работает) без участия человека (оператора), то она называется системой автоматического управления (САУ).
Если СУ функционирует с участием человека (оператора), то она называется автоматизированной СУ.
Если Управление обеспечивает заданный закон изменения объекта во времени независимо от результатов управления, то такое управление совершается по разомкнутому циклу, а само управление называется программным управлением.
К системам, работающим по разомкнутому циклу, относятся промышленные автоматы (конвейерные линии, роторные линии и т.д.), станки с числовым программным управлением (ЧПУ): см. пример на рис. 1.1.2.
Задающее устройство может быть, например, и “копиром”.
Поскольку в данном примере нет датчиков (измерителей), контролирующих изготавливаемую деталь, то если, например, резец был установлен неправильно или сломался, то поставленная цель (изготовление детали) не может быть достигнута (реализована). Обычно в системах подобного типа необходим выходной контроль, который будет только фиксировать отклонение размеров и формы детали от желаемой.
Автоматические системы управления подразделяются на 3 типа:
САР и СС являются подмножествами САУ ==> .
Определение: Автоматическая система управления, обеспечивающая постоянство какой-либо физической величины (группы величин) в объекте управления называется системой автоматического регулирования (САР).
Системы автоматического регулирования (САР) — наиболее распространенный тип систем автоматического управления.
Первый в мире автоматический регулятор (18-е столетие) – регулятор Уатта. Данная схема (см. рис. 1.1.3) реализована Уаттом в Англии для поддержания постоянной скорости вращения колеса паровой машины и, соответственно, для поддержания постоянства скорости вращения (движения) шкива (ремня) трансмиссии.
В данной схеме чувствительными элементами (измерительными датчиками) являются “грузы” (сферы). «Грузы» (сферы) также “заставляют” перемещаться коромысло и затем задвижку. Поэтому данную систему можно отнести к системе прямого регулирования, а регулятор — к регулятору прямого действия, так как он одновременно выполняет функции и “измерителя” и “регулятора”.
В регуляторах прямого действия дополнительного источника энергии для перемещения регулирующего органа не требуется.
В системах непрямого регулирования необходимо присутствие (наличие) усилителя (например, мощности), дополнительного исполнительного механизма, содержащего, например, электродвигатель, серводвигатель, гидропривод и т.д.
Примером САУ (системы автоматического управления), в полном смысле этого определения, может служить система управления, обеспечивающая вывод ракеты на орбиту, где управляемой величиной может быть, например, угол между осью ракеты и нормалью к Земле ==> см. рис. 1.1.4.а и рис. 1.1.4.б
1.2. Структура систем управления: простые и многомерные системы
В теории управления техническими системами часто бывает удобно систему разделить на набор звеньев, соединенных в сетевые структуры. В простейшем случае система содержит одно звено, на вход которого подается входной воздействие (вход), на входе получается отклик системы (выход).
В теории Управления Техническими Системам используют 2 основных способа представления звеньев систем управления:
— в переменных “вход-выход”;
— в переменных состояния (более подробно см. разделы 6…7).
Представление в переменных “вход-выход” обычно используется для описания относительно простых систем, имеющих один “вход” (одно управляющее воздействие) и один “выход” (одна регулируемая величина, см. рисунок 1.2.1).
Обычно такое описание используется для технически несложных САУ (систем автоматического управления).
В последнее время широкое распространение имеет представление в переменных состояния, особенно для технически сложных систем, в том числе и для многомерных САУ. На рис. 1.2.2 приведено схематичное представление многомерной системы автоматического управления, где u1(t)…um(t) — управляющие воздействия (вектор управления), y1(t)…yp(t) — регулируемые параметры САУ (вектор выхода).
Рассмотрим более детально структуру САУ, представленную в переменных “вход-выход” и имеющую один вход (входное или задающее, или управляющее воздействие) и один выход (выходное воздействие или управляемая (или регулируемая) переменная).
Предположим, что структурная схема такой САУ состоит из некоторого числа элементов (звеньев). Группируя звенья по функциональному принципу (что звенья делают), структурную схему САУ можно привести к следующему типовому виду:
Рис. 1.2.3 — Структурная схема системы автоматического управления
Символом ε(t) или переменной ε(t) обозначается рассогласование (ошибка) на выходе сравнивающего устройства, которое может “работать” в режиме как простых сравнительных арифметических операций (чаще всего вычитание, реже сложение), так и более сложных сравнительных операций (процедур).
Задача системы управления состоит в том (если она устойчива), чтобы “работать” на уничтожение рассогласования (ошибки) ε(t), т.е. ==> ε(t) → 0.
Следует отметить, что на систему управления действуют как внешние воздействия (управляющее, возмущающее, помехи), так и внутренние помехи. Помеха отличается от воздействия стохастичностью (случайностью) своего существования, тогда как воздействие почти всегда детерминировано.
Для обозначения управляющего (задающего воздействие) будем использовать либо x(t), либо u(t).
1.3. Основные законы управления
Если вернуться к последнему рисунку (структурная схема САУ на рис. 1.2.3), то необходимо “расшифровать” роль, которую играет усилительно-преобразующее устройство (какие функции оно выполняет).
Если усилительно-преобразующее устройство (УПУ) выполняет только усиление (или ослабление) сигнала рассогласования ε(t), а именно: , где
– коэффициент пропорциональности (в частном случае
= Const), то такой режим управления замкнутой САУ называется режимом пропорционального управления (П-управление).
Если УПУ выполняет формирование выходного сигнала ε1(t), пропорционального ошибке ε(t) и интегралу от ε(t), т.е. , то такой режим управления называется пропорционально-интегрирующим (ПИ-управление). ==>
, где b – коэффициент пропорциональности (в частном случае b = Const).
Обычно ПИ-управление используется для повышения точности управления (регулирования).
Если УПУ формирует выходной сигнал ε1(t), пропорциональный ошибке ε(t) и ее производной, то такой режим называется пропорционально-дифференцирующим (ПД-управление): ==>
Обычно использование ПД-управления повышает быстродействие САУ
Если УПУ формирует выходной сигнал ε1(t), пропорциональный ошибке ε(t), ее производной, и интегралу от ошибки ==> , то такой режим называетсято такой режим управления называется пропорционально-интегрально-дифференцирующим режимом управления (ПИД-управление).
ПИД-управление позволяет зачастую обеспечить “хорошую” точность управления при “хорошем” быстродействии
1.4. Классификация систем автоматического управления
1.4.1. Классификация по виду математического описания
По виду математического описания (уравнений динамики и статики) системы автоматического управления (САУ) подразделяются на линейные и нелинейные системы (САУ или САР).
Каждый “подкласс” (линейных и нелинейных) подразделяется на еще ряд “подклассов”. Например, линейные САУ (САР) имеют различия по виду математического описания.
Поскольку в этом семестре будут рассматриваться динамические свойства только линейных систем автоматического управления (регулирования), то ниже приведем классификацию по виду математического описания для линейных САУ (САР):
1) Линейные системы автоматического управления, описываемые в переменных «вход-выход» обыкновенными дифференциальными уравнениями (ОДУ) с постоянными коэффициентами:
где x(t) – входное воздействие; y(t) – выходное воздействие (регулируемая величина).
Если использовать операторную («компактную») форму записи линейного ОДУ, то уравнение (1.4.1) можно представить в следующем виде:
где, p = d/dt — оператор дифференцирования; L(p), N(p) — соответствующие линейные дифференциальные операторы, которые равны:
2) Линейные системы автоматического управления, описываемые линейными обыкновенными дифференциальными уравнениями (ОДУ) с переменными (во времени) коэффициентами:
В общем случае такие системы можно отнести и к классу нелинейных САУ (САР).
3) Линейные системы автоматического управления, описываемые линейными разностными уравнениями:
где f(…) – линейная функция аргументов; k = 1, 2, 3… — целые числа; Δt – интервал квантования (интервал дискретизации).
Уравнение (1.4.4) можно представить в «компактной» форме записи:
Обычно такое описание линейных САУ (САР) используется в цифровых системах управления (с использованием ЭВМ).
4) Линейные системы автоматического управления с запаздыванием:
где L(p), N(p) — линейные дифференциальные операторы; τ — время запаздывания или постоянная запаздывания.
Если операторы L(p) и N(p) вырождаются (L(p) = 1; N(p) = 1), то уравнение (1.4.6) соответствует математическому описанию динамики звена идеального запаздывания:
а графическая иллюстрация его свойств привдена на рис. 1.4.1
5) Линейные системы автоматического управления, описываемые линейными дифференциальными уравнения в частных производных. Нередко такие САУ называют распределенными системами управления. ==> «Абстрактный» пример такого описания:
Система уравнений (1.4.7) описывает динамику линейно распределенной САУ, т.е. регулируемая величина зависит не только от времени, но и от одной пространственной координаты.
Если система управления представляет собой «пространственный» объект, то ==>
где зависит от времени и пространственных координат, определяемых радиусом-вектором
6) САУ, описываемые системами ОДУ, или системами разностных уравнений, или системами уравнений в частных производных ==> и так далее…
Аналогичную классификацию можно предложить и для нелинейных САУ (САР)…
Для линейных систем выполеняются следующие требования:
Статической характеристикой называется зависимость выхода от величины входного воздействия в установившемся режиме (когда все переходные процессы затухли).
Для систем, описываемых линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами статическая характеристика получается из уравнения динамики (1.4.1) приравниванием нулю всех нестационарных членов ==>
На рис.1.4.2 представлены примеры линейной и нелинейных статических характеристик систем автоматического управления (регулирования).
Нелинейность членов, содержащих производные по времени в уравнениях динамики, может возникнуть при использовании нелинейных математических операций (*, /, ,
, sin, ln и т.д.). Например, рассматривая уравнение динамики некоторой «абстрактной» САУ
отметим, что в этом уравнении при линейной статической характеристики второе и третье слагаемые (динамические члены) в левой части уравнения — нелинейные, поэтому САУ, описываемая подобным уравнением, является нелинейной в динамическом плане.
1.4.2. Классификация по характеру передаваемых сигналов
По характеру передаваемых сигналов системы автоматического управления (или регулирования) подразделяются:
Системой непрерывного действия называется такая САУ, в каждом из звеньев которой непрерывному изменению входного сигнала во времени соответствует непрерывное изменение выходного сигнала, при этом закон изменения выходного сигнала может быть произвольным. Чтобы САУ была непрерывной, необходимо, чтобы статические характеристики всех звеньев были непрерывными.
Системой релейного действия называется САУ, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина в некоторые моменты процесса управления меняется “скачком” в зависимости от величины входного сигнала. Статическая характеристика такого звена имеет точки разрыва или излома с разрывом.
Системой дискретного действия называется система, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина имеет вид отдельных импульсов, появляющиеся через некоторый промежуток времени.
Звено, преобразующее непрерывный сигнал в дискретный сигнал, называется импульсным. Подобный вид передаваемых сигналов имеет место в САУ с ЭВМ или контроллером.
Наиболее часто реализуются следующие методы (алгоритмы) преобразования непрерывного входного сигнала в импульсный выходной сигнал:
На рис. 1.4.5 представлена графическая иллюстрация алгоритма амплитудно-импульсной модуляции (АИМ). В верхней части рис. представлена временная зависимость x(t) — сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис.). Длительность импульсов – одинакова и равна Δ. Амплитуда импульса на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе данного блока.
Данный метод импульсной модуляции был весьма распространен в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) в 70-х…80-х годах прошлого столетия.
На рис. 1.4.6 представлена графическая иллюстрация алгоритма широтно-импульсной модуляции (ШИМ). В верхней части рис. 1.14 представлена временная зависимость x(t) – сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис. 1.14). Амплитуда всех импульсов – одинакова. Длительность импульса Δt на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе импульсного блока.
Данный метод импульсной модуляции в настоящее время является наиболее распространенным в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) и САУ других технических систем.
Завершая данный подраздел, необходимо заметить, что если характерные постоянные времени в других звеньях САУ (САР) существенно больше Δt (на порядки), то импульсная система может считаться непрерывной системой автоматического управления (при использовании как АИМ, так и ШИМ).
1.4.3. Классификация по характеру управления
По характеру процессов управления системы автоматического управления подразделяются на следующие типы:
Выходной стохастический сигнал характеризуется:
Кроме приведенных основных видов классификации систем управления, существуют и другие классификации. Например, классификация может проводиться по методу управления и основываться на взаимодействии с внешней средой и возможности адаптации САУ к изменению параметров окружающей среды. Системы делятся на два больших класса:
1) Обыкновенные (несамонастраивающиеся) СУ без адаптации; эти системы относятся к разряду простых, не изменяющих свою структуру в процессе управления. Они наиболее разработаны и широко применяются. Обыкновенные СУ подразделяются на три подкласса: разомкнутые, замкнутые и комбинированные системы управления.
2) Самонастраивающиеся (адаптивные) СУ. В этих системах при изменении внешних условий или характеристик объекта регулирования происходит автоматическое (заранее не заданное) изменение параметров управляющего устройства за счет изменения коэффициентов СУ, структуры СУ или даже введения новых элементов.
Другой пример классификации: по иерархическому признаку (одноуровневые, двухуровневые, многоуровневые).