Метод биений применяют при точном измерении параметров колебаний

Метод нулевых биений

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Ме́тод нулевы́х бие́ний — способ сравнения частот двух источников сигналов с целью подстройки одного источника под частоту другого, используя свойство колебаний с близкими, но не равными частотами, при наложении друг на друга создавать биения. В процессе подстройки частоту регулируемого источника изменяют таким образом, чтобы период биений увеличивался, до тех пор, пока биения не исчезнут, это будет означать, что частоты совпадают.

Некоторые примеры применения метода

Литература

См. также

Смотреть что такое “Метод нулевых биений” в других словарях:

метод нулевых биений — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN zero beat method … Справочник технического переводчика

метод нулевых биений — nulinės mūšos metodas statusas T sritis radioelektronika atitikmenys: angl. zero beat method vok. Nullschwebungsmethode, f rus. метод нулевых биений, m pranc. méthode d annulation des battements zéro, f … Radioelektronikos terminų žodynas

Биения — График колебаний при биениях. Биения явление, возникающее при наложении двух гармонических колебаний, близких по частоте, выражающееся в периодическом уменьшении и увеличении … Википедия

Nullschwebungsmethode — nulinės mūšos metodas statusas T sritis radioelektronika atitikmenys: angl. zero beat method vok. Nullschwebungsmethode, f rus. метод нулевых биений, m pranc. méthode d annulation des battements zéro, f … Radioelektronikos terminų žodynas

méthode d’annulation des battements zéro — nulinės mūšos metodas statusas T sritis radioelektronika atitikmenys: angl. zero beat method vok. Nullschwebungsmethode, f rus. метод нулевых биений, m pranc. méthode d annulation des battements zéro, f … Radioelektronikos terminų žodynas

nulinės mūšos metodas — statusas T sritis radioelektronika atitikmenys: angl. zero beat method vok. Nullschwebungsmethode, f rus. метод нулевых биений, m pranc. méthode d annulation des battements zéro, f … Radioelektronikos terminų žodynas

zero-beat method — nulinės mūšos metodas statusas T sritis radioelektronika atitikmenys: angl. zero beat method vok. Nullschwebungsmethode, f rus. метод нулевых биений, m pranc. méthode d annulation des battements zéro, f … Radioelektronikos terminų žodynas

частота — 3.2 частота: Вероятность появления последствия (возникновения опасного события). Источник: ГОСТ Р ИСО/ТС 14798 2003: Лифты, эскалаторы и пассажирские конвейеры. Методология анализа риска 06.01.15 частота [ frequency]: Число циклов периодического… … Словарь-справочник терминов нормативно-технической документации

Источник

Радиолюбительские измерения: когда нет частотомера

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

В радиолюбительской практике, в силу ограниченности бюджета, часто возникает ситуация, когда тот или иной нужный для работы прибор недоступен. В такой ситуации приходится вычислять нужный параметр по результатам косвенных измерений, т.е. «сверлить пилой и пилить буравчиком».

В процессе отладки разрабатываемого мной устройства возникла необходимость провести калибровку цифрового синтезатора частоты в составе этого устройства. Задача является тривиальной при наличии частотомера электронно-счётного (ЭСЧ). Проблема же заключалась в том, что «взять взаймы» частотомер мне не удалось.

Если описать работу применённого в устройстве синтезатора частоты совсем просто, он образует на выходе сигнал с частотой Fs путём обработки входного сигнала от опорного генератора с частотой Fxo:

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

В качестве частотозадающего элемента опорного генератора был использован недорогой кварцевый резонатор с маркировкой на корпусе «TXC 25.0F6QF». Точное значение частоты сигнала опорного генератора известно не было. В настройках синтезатора опорная частота была указана константой 25000000 Hz. Сам синтезатор частоты был запрограммирован на вывод сигнала частотой 9996 kHz.

Проверка работоспособности схемы

Для проверки работоспособности синтезатора был использован цифровой осциллограф Rigol DS1102E. В настройках канала было включено измерение частоты.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Осциллограф на выводах кварцевого резонатора показал измеренное значение 25.00 MHz, а на выходе синтезатора – 10.00 MHz. В принципе, это уже было неплохо: схема работала.

Метод биений частоты

Аналогом калибровки частотозадающих цепей методом биений является методика настройки музыкальных инструментов по камертону. Звук, извлекаемый из инструмента, накладывается на звук камертона. Если тоны не совпадают, возникают хорошо заметные на слух «биения» частоты. Подстройка тона музыкального инструмента производится до появления «нулевых биений», т.е. состояния, когда частоты совпадают.

Применение радиоприёмника с панорамным индикатором

Проще всего калибровку синтезатора частоты методом биений было провести с использованием радиоприёмника с панорамным индикатором и сигнала радиостанции RWM в качестве контрольного сигнала.

В качестве контрольного приёмника использовался SoftRock RX Ensemble II с программой HDSDR. Шкала приёмника была ранее откалибрована по сигналам радиостанции RWM на всех трёх частотах: 4996000, 9996000 и 14996000 Hz. В качестве контрольного сигнала использовался сигнал радиостанции RWM на частоте 9996000 Hz.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

На скриншоте виден приём секундных меток RWM на частоте 9996000 Hz и приём выходного сигнала синтезатора на частоте, примерно, 9997970 Hz. При задании частоты синтезатора использовалась константа 25000000 Hz (номинальная частота кварцевого резонатора). При проведении калибровки эта константа была умножена на отношение частот 9997970 Hz и 9996000 Hz. В результате было получено значение реальной частоты запуска кварцевого резонатора 25004927 Hz. Это значение было занесено константой в прошивку устройства. На скриншоте показан результат проведения калибровки:

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Частота выходного сигнала синтезатора 9996 kHz точно соответствует частоте приёма секундных меток RWM на частоте 9996000 Hz.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

После проведения калибровки осциллограф показал на выводах кварцевого резонатора – 25.00 MHz, а на выходе синтезатора – 10.00 MHz, т.е. те же самые значения, что и до калибровки.

Использование сигналов вещательных радиостанций

В Перми в светлое время суток стабильно принимается сигнал RWM на частоте 9996 kHz, а в тёмное время суток – на частоте 4996 kHz. Если прохождение радиоволн нестабильно, и сигналы RWM не принимаются, на сайте hfcc.org можно найти частоты и расписание работы вещательных радиостанций.

Несущие сигналы вещательных станций тоже можно, при необходимости, использовать в качестве контрольных, т.к. они обычно имеют отклонение частоты не более 10 Hz от частоты вещания.

Краткие выводы

Наиболее простой и точный способ измерения частоты сигнала в радиодиапазоне — измерение частоты электронно-счётным частотомером.

Получить приблизительное значение частоты сигнала можно, приняв его на контрольный приёмник с калиброванной шкалой.

Получить при использовании контрольного приёмника точное значение частоты сигнала можно по «нулевым биениям» измеряемого сигнала с контрольным сигналом, полученным от эталонного источника.

Необходимые дополнения:

Калибровку синтезатора можно было бы провести:

Источник

ИЗМЕРЕНИЕ ЧАСТОТЫ

Общие сведения

Для измерения частоты источников питания электрорадиоустройств применяют электромагнитные, электро- и ферродинамические частотомеры с непосредственной оценкой по шкале логометрического измерителя, а также камертонные частотомеры. Эти приборы имеют узкие пределы измерений, обычно в пределах +-10% одной из номинальных частот 25, 50, 60, 100, 150, 200, 300, 400, 430, 500, 800, 1000, 1500 и 2400 Гц, и работают при номинальном напряжении 36, 110, 115, 127, 220 или 380 В.

Измерение частоты при помощи вольтметра

Наиболее простым является косвенный способ измерения частоты, основанный на зависимости сопротивления реактивных элементов от частоты протекающего по ним тока. Возможная схема измерений представлена на рис. 1.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 1. Схема измерения частоты при помощи вольтметра

Входное сопротивление вольтметра V должно по крайней мере в 10 раз превышать сопротивление каждого из элементов цепочки. Однако влияние вольтметра можно исключить, если использовать его лишь в качестве индикатора равенства напряжений UR и UC, достигаемого, например, плавным изменением сопротивления R. В этом случае измеряемая частота определяется простой формулой:

и при неизменной ёмкости конденсатора С переменный резистор R можно снабдить шкалой с отчётом в значениях Fx.

Оценим возможный порядок измеряемых частот. Если резистор R имеет максимальное сопротивление RM = 100 кОм, то при С = 0,01 мкФ, 1000 и 100 пФ верхний предел измерений составит соответственно 160, 1600 и 16000 Гц. При выборе RM = 10 кОм и тех же значениях ёмкостей эти пределы окажутся равными 1600 Гц, 16 и 160 кГц. Эффективность метода зависит от точности подбора номиналов и качества элементов RС-цепочки.

Ёмкостные частотомеры

Для практических целей наиболее удобны прямопоказывающие частотомеры, позволяющие вести непрерывные наблюдения за частотой исследуемых колебаний по шкале стрелочного измерителя. К ним относятся, прежде всего, ёмкостные частотомеры, действие которых основано на измерении среднего значения тока заряда или разряда опорного конденсатора, периодически перезаряжаемого напряжением измеряемой частоты fx. Эти приборы применяются для измерения частот от 5-10 Гц до 200-500 кГц. При допустимой погрешности измерений примерно 3-5% они могут быть выполнены по простым схемам, один из вариантов которых представлен на рис. 2. Здесь транзистор Т1, работающий в ключевом режиме, управляется напряжением частоты fx, которое подводится к его базе с входного потенциометра R1. В отсутствие входного сигнала транзистор Т1 открыт, поскольку его база через резисторы R3 и R2 соединена с отрицательным полюсом источника питания. При этом на резисторе R5 делителя R5, R2 создаётся падение напряжения U; последнее благодаря наличию конденсатора большой ёмкости С2 фиксируется в качестве напряжения питания транзисторного каскада и при быстрых периодических изменениях режима транзистора почти не меняется. При установке переключателя В в положение «U-» измеритель И, включённый последовательно с добавочным резистором R6, образует вольтметр, измеряющий постоянное напряжение U на конденсаторе С2, которое с помощью подстроечного резистора R2 поддерживается на определённом уровне, например 15 В. Вместо рассмотренной может быть успешно применена типовая схема параметрической стабилизации напряжения на стабилитроне, не требующая систематического контроля.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 2. Схема ёмкостного частотомера

Это позволяет снабдить измеритель линейной шкалой, проградуированной непосредственно в значениях измеряемых частот.

Если известны ток полного отклонения измерителя Iи и постоянное напряжение U, то при заданном предельном значении измеряемых частот fп конденсатор должен иметь ёмкость

Например, при номиналах элементов схемы, указанных на рис. 2, частотомер может быть отрегулирован для работы при верхних пределах измерений 100 Гц, 1, 10 и 100 кГц.

В данной схеме коммутатор на транзисторе Т1 одновременно выполняет функции усилителя-ограничителя, благодаря чему показания частотомера мало зависят от формы входного напряжения. Любое периодическое входное напряжение с амплитудой примерно от 0,5 В и выше трансформируется в импульсное напряжение почти прямоугольной формы с неизменной амплитудой Uf которое питает измерительную (счётную) цепь частотомера. Конденсатор С3, шунтирующий измеритель, сглаживает пульсации стрелки последнего при измерении самых низких частот общего диапазона.

Подстроечный резистор R7, включённый параллельно измерителю, служит для коррекции шкалы частотомера в процессе его эксплуатации. При этом на вход частотомера подают напряжение опорной частоты от измерительного генератора или сети переменного тока (50 Гц) и регулировкой сопротивления R7 добиваются отклонения стрелки измерителя до соответствующего деления шкалы частот. Такую регулировку повторяют несколько раз, перемежая её с указанной выше установкой напряжения питания U, осуществляемой с помощью резистора R2.

Входное напряжение, меньшее 0,3-0,5 В, может оказаться недостаточным для запирания транзистора Т1 в течение большей части положительного полупериода; тогда конденсатор С не будет успевать заряжаться до напряжения U и показания частотомера окажутся заниженными. Для повышения чувствительности по входному напряжению до 20-50 мВ электронному ключу иногда предшествует усилительный каскад, выполняемый по схеме с общим эмиттером.

При чрезмерном входном напряжении входной транзистор может быть повреждён; это приводит к необходимости включения на входе ограничительных или регулировочных элементов, например потенциометра R1 в схеме на рис. 2. Входное напряжение следует повышать постепенно, следя за показаниями измерителя частотомера, и когда последние, после некоторого интервала возрастания, стабилизируются, можно производить оценку частоты fx. Полезно осуществлять контроль входного напряжения с целью установки его на оптимальном для данного частотомера уровне, например 1,5 В. В данной схеме это имеет место в положении «U

» переключателя В, когда измеритель с диодами Д1, Д2 и резистором R4 образуют вольтметр переменного тока с пределом измерений примерно 3 В, контролирующий напряжение, снимаемое с потенциометра R1.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 3. Схема универсального ёмкостного частотомера

Поскольку длительность этих импульсов зависит от частоты и амплитуды входного сигнала, они непригодны для точного измерения частоты. Поэтому с помощью дифференцирующей RC-цепочки каждый прямоугольный импульс триггера преобразуется в пару остроконечных импульсов различной полярности. Один из этих импульсов, возникающий при спаде прямоугольного импульса, отфильтровывается с помощью диода, а второй, соответствующий фронту прямоугольного импульса триггера, используется для запуска ждущего мультивибратора. Последний выдаёт прямоугольные импульсы строго определённой длительности и амплитуды, частота повторения которых, очевидно, равна fx. В результате счётная схема с переключаемыми конденсаторами различных номиналов, выпрямительными элементами и стрелочным измерителем обеспечивает измерение частоты fx при полной независимости отсчёта от амплитуды и формы входного напряжения. С целью уменьшения погрешности измерений (не превышающей в лучших образцах 1%) на каждом частотном пределе устанавливается оптимальная длительность импульсов мультивибратора, примерно равная половине периода наивысшей частоты этого предела измерений. Если питание универсального частотомера производится от сети переменного тока, то обязательно осуществляют параметрическую стабилизацию выпрямленного напряжения, причём частота сети 50 Гц или её удвоенное значение 100 Гц (частота пульсаций) используется в качестве опорной для коррекции шкалы.

В конкретных приборах рассмотренная функциональная схема реализуется в различных вариантах. На рис. 3 приведена схема сравнительно простого универсального частотомера с верхними пределами измерения 200, 2000 и 20 000 Гц, в котором может быть использован измеритель И с током полного отклонения 1-3 мА. Прибор содержит входной ступенчатый делитель R1-R3, усилитель на транзисторе T1, триггер Шмитта на транзисторах Т2 и Т3, дифференцирующую цепочку С3, R13 с диодом Д2, пропускающим лишь импульсы положительной полярности, и ждущий мультивибратор на транзисторах Т4, Т5. Особенностью частотомера является отсутствие специальных выпрямительных элементов. Измеритель И включён в одно из плеч мультивибратора, открываемое на фиксированный интервал времени продифференцированными импульсами запуска, и регистрирует среднее значение коллекторного тока, пропорциональное частоте fx. Верхние пределы измерений fп определяются длительностью импульсов мультивибратора, которые устанавливаются подбором номиналов конденсаторов С4-С6 с использованием подстроечных резисторов R18-R20. Поскольку в данной схеме все счётные RC-цепочки взаимосвязаны, регулировку их следует производить в следующем порядке: C4-R18, C5-R19 и C6-R20 с последующей повторной подстройкой всех пределов резисторами R18-R20.

Погрешность измерений частотомера определяется в основном точностью настройки и устойчивостью работы ждущего мультивибратора, поэтому напряжение питания последнего стабилизируется резистором R12 и стабилитроном Д1. Подстроечным резистором R4 подбирают оптимальное смещение на базе транзистора Т1 (4-5 В). При наличии высокочастотного предела измерений (например, до 200 кГц) для повышения быстродействия триггера и мультивибратора полезно включить параллельно резисторам R10 и R15 конденсаторы небольшой ёмкости (десятки пикофарад).

Поскольку усилитель на транзисторе T1 работает в режиме ограничения амплитуды, то при входных напряжениях до 10-20 В можно обойтись без входного делителя напряжения; при этом на входе следует включить ограничительный резистор.

Электронно-счётные (цифровые) частотомеры

Действие электронно-счётных частотомеров основано на дискретном счёте числа импульсов, поступающих за калиброванный интервал времени на электронный счётчик с цифровой индикацией. На рис. 4 приведена упрощённая функциональная схема прибора. Напряжение измеряемой частоты fx в усилительно-формирующем устройстве преобразуется в последовательность однополярных импульсов, повторяющихся с той же частотой fx. Для этой цели часто используется система из усилителя-ограничителя и триггера Шмитта, дополненная на выходе дифференцирующей цепочкой и диодным ограничителем (см. Ёмкостные частотомеры и рис. 3). Временной селектор (электронный ключ с двумя входами) пропускает эти импульсы на электронный счётчик лишь в течение строго фиксированного интервала времени Δt, определяемого длительностью прямоугольного импульса, воздействующего на его второй вход. При регистрации счётчиком m импульсов измеряемая частота определяется формулой

Например, если за время Δt = 0,01 с отмечено 5765 импульсов, то fx = 576,5 кГц.

Погрешность измерения частоты определяется главным образом погрешностью калибровки выбранного интервала времени счёта. Задающим компонентом в системе формирования этого интервала является высокостабильный кварцевый генератор, положим, частоты 100 кГц. Создаваемые им колебания с помощью группы последовательно включённых делителей частоты преобразуются в колебания с частотами (f0) 10 и 1 кГц, 100, 10, 1 и 0,1 Гц. которым соответствуют периоды (Т0) 0,0001; 0,001; 0,01; 0,1; 1 и 10 с (последние одно или два из указанных значений f0 и Т0 у некоторых частотомеров отсутствуют).

Колебания выбранной (посредством переключателя В2) частоты f0 (числовое значение последней является множителем к отсчёту по счётчику) с помощью триггера Шмитта преобразуются в прямоугольные колебания с частотой повторения f0. Под их действием в управляющем устройстве формируется интервальный импульс длительностью Δt = Т0 = 1/f0 строго прямоугольной формы. Этот импульс вызывает сброс предыдущих показаний счётчика, а затем (с задержкой на несколько микросекунд) поступает на селектор и открывает его на время Δt для пропускания импульсов с частотой повторения fx. После закрывания селектора число пропущенных им импульсов m фиксируется индикатором счётчика, а измеряемая частота определяется по формуле fx = m*f0.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 4. Упрощённая функциональная схема электронно-счётного (цифрового) частотомера

Цепь управления селектором может запускаться вручную (нажатием кнопки «Пуск»); в этом случае управляющее устройство посылает на селектор одиночный импульс длительностью Δt и счётчик выдаёт разовый результат измерений с неограниченным временем индикации его. В режиме автоматического измерения частоты импульсы реле времени периодически повторяются и результаты измерения обновляются через выбранные интервалы времени.

Частотомер может служить источником колебаний ряда опорных частот f0, получаемых с помощью кварцевого генератора, умножителя и делителей частоты и снимаемых со специального выхода. Эти же колебания, поданные на вход частотомера, могут служить для проверки правильности показаний счётчика.

Счётчик частотомера собирается из 4-7 пересчётных декад на триггерных схемах и цифровых индикаторных лампах. Число декад определяет максимальное число значащих цифр (разрядов) в результатах измерений. Возможная ошибка счёта, называемая погрешностью дискретности, составляет одну единицу в цифре самого младшего разряда. Поэтому желателен выбор такого интервала времени счёта Δt, при котором используется максимальное число разрядов счётчика. Так, в рассмотренном выше примере при Δt = 0,01 с (f0 = 100 Гц) для отсчёта оказалось достаточным четырёх разрядов счётчика и результат измерений fx = 576,5 кГц +-100 Гц. Предположим, что измерения повторены при Δt = 0,1 с (f0 = 10 Гц) и получен отсчёт m = 57653 импульсов. Тогда fx = 576,53 кГц +-10 Гц. Ещё меньшая погрешность дискретности (+-1 Гц) будет получена при Δt = 1 с (в этом случае счётчик должен иметь не менее шести декад).

При расширении диапазона измерений частотомера в сторону высоких частот ограничивающим фактором является быстродействие пересчётных декад. При выполнении триггерных схем на высокочастотных кремниевых транзисторах (например, типа КТ316А), имеющих время рассасывания заряда в базе примерно 10 нс, верхняя предельная измеряемая частота может достигать десятков мегагерц. В некоторых приборах при измерении высоких частот, превышающих, например, 10 МГц, их предварительно преобразуют в частоту, меньшую 10 МГц (например, частоту 86,347 МГц в частоту 6,347 МГц), пользуясь гетеродинным методом (см. Гетеродинные частотомеры).

Фактором, ограничивающим нижнюю предельную измеряемую частоту, является время измерений. Если, например, установить наибольший для многих частотомеров интервал времени счёта Δt = 1 с, то при регистрации счётчиком 10 импульсов результатом измерений явится частота fx = 10 = +-1 Гц, т.е. погрешность измерения может достигать 10%. Для уменьшения погрешности, положим, до 0,01% необходимо было бы производить счёт импульсов в течение времени Δt = 1000 с. Ещё большее время требуется для точного измерения частот, равных 1 Гц и менее. Поэтому в электронно-счётных частотомерах измерение очень низких частот fx заменяют измерением периода их колебаний Тх = 1/fx. Схема измерения периода колебаний образуется при установке переключателя В1 в положение «Тх» (рис. 4). Исследуемое напряжение после преобразования в триггере Шмитта воздействует на управляющее устройство, в котором формируется прямоугольный импульс длительностью Тx, поддерживающий временной селектор в открытом состоянии; в течение этого времени счётчик регистрирует импульсы, формируемые из колебаний одной из опорных частот fо, определяемой установкой переключателя В2. При числе m отмеченных импульсов измеряемый период

Например, при m = 15625 и f0 = 1000 Гц период Тх = 15,625 с, что соответствует частоте fx = 1/Тх = 0,054 Гц. Измерения, в целях уменьшения их погрешности, желательно производить при возможно большем значении частоты fо (исключающем, конечно, перегрузку счётчика). Если период Тх 1 Гц), то может оказаться рациональным использование колебаний частоты f0, равной 1 или 10 МГц, получаемых после умножителей частоты. При этом нижний предел измеряемых частот удаётся расширить до 0,01 Гц.

К недостаткам электронно-счётных частотомеров следует отнести сложность их схем, значительные габариты и массу, высокую стоимость.

Осциллографические методы измерения частоты

Измеряемая частота может быть определена сравнением её с известной опорной частотой fo. Такое сравнение чаще всего производится с помощью электроннолучевого осциллографа или методами биений.

Электроннолучевые осциллографы применяются для измерения частот колебаний главным образом синусоидальной формы в диапазоне частот примерно от 10 Гц до значения, определяемого верхней границей полосы пропускания каналов отклонения; погрешность измерений практически равна погрешности калибровки источника колебаний (генератора) опорной частоты f0. Чаще всего измерения проводят при выключенной развёртке осциллографа, пользуясь схемой соединений, показанной на рис. 5. Напряжения измеряемой и известной частот подводят непосредственно или через усилители к различным парам отклоняющих пластин ЭЛТ (в зависимости от того, на какой вход осциллографа эти напряжения воздействуют, будем обозначать их частоты через fx и fy). Если эти частоты относятся друг к другу как целые числа, например 1:1, 1:2, 2:3 и т. п., то перемещение электронного луча приобретает периодический характер и на экране наблюдается неподвижное изображение, называемой фигурой Лиссажу. Форма этой фигуры зависит от соотношения амплитуд, частот и начальных фаз сравниваемых колебаний.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 5. Схема измерения частоты методом фигур Лиссажу

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 6. Построение осциллограммы при отношении сравниваемых частот fx/fy = 1

Если отношение частот fx/fy (или fy/fx) равно двум, то фигура на экране принимает вид восьмёрки, которая при начальных фазовых сдвигах 90 и 270° стягивается в дугу. (Начальный фазовый сдвиг всегда оценивается по отношению к периоду напряжения более высокой частоты). Из таблицы, приведённой на рис. 7, видно, что чем больше числа дроби, характеризующей отношение сравниваемых частот, тем сложнее фигура Лиссажу, наблюдаемая на экране.

При измерении частоту опорного генератора f0 (равную fx или fy) плавно изменяют до тех пор, пока на экране не возникнет одна из фигур Лиссажу возможно более простой формы. Эту фигуру мысленно пересекают линиями xx и уу, параллельными плоскостям отклоняющих пластин X1, Х2 и Y1, Y2, и подсчитывают число пересечений каждой из линий с фигурой. Отношение полученных чисел точно равно отношению частот fx:fy при условии, что проведённые линии не проходят через узловые точки фигуры или касательно к ней, а форма сравниваемых колебаний близка к синусоидальной.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 7. Фигуры, наблюдаемые на экране при различных отношениях частот fx/fy

Определив отношение fx:fy и зная одну из частот, например fy, легко найти вторую частоту.

Предположим, что при известной частоте fy = 1000 Гц на экране получена фигура, изображённая на рис. 5. Из приведённого на чертеже построения видно, что эта фигура соответствует отношению частот fx:fy = 3:4, откуда fx = 750 Гц.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 8. Схема измерения частоты методом круговой развёртки с модуляцией яркости

При целочисленном отношении сравниваемых частот, превышающем 8-10, или дробном их отношении с числами в знаменателе или числителе, большими 4-5, из-за усложнения фигуры Лиссажу возрастает возможность ошибки в установлении истинного отношения частот. Точное определение сравнительно больших целочисленных отношений частот (до 30-50) может производиться методом круговой развёртки с модуляцией яркости изображения (рис. 8). В этом случае напряжение меньшей частоты f1 с помощью двух одинаковых фазорасщепляющих RС-цепочек преобразуется в два напряжения той же частоты, взаимно сдвинутые по фазе на 90°. При воздействии этих напряжений соответственно на входы Y и X осциллографа и регулировке соотношения их амплитуд резисторами R и регуляторами усиления каналов Y и X световое пятно на экране будет перемещаться по кривой, близкой к окружности; последнюю с помощью регулятора яркости устанавливают чётко видимой. Напряжение более высокой частоты f2 подводят к входу модулятора М (или канала Z) и оно периодически будет увеличивать и уменьшать интенсивность электронного луча, а следовательно, и яркость отдельных участков кривой развёртки на экране. При целочисленном отношении частот f2:f1 = m, достигаемом изменением одной из них, кривая наблюдаемой окружности становится штриховой, она состоит из f неподвижных светящихся отрезков равной длины, разделённых тёмными промежутками. При нарушении целочисленного отношения наблюдается вращение штриховой окружности, при большой скорости которого окружность представляется сплошной.

Измерение частоты методами биений

Источником колебаний опорных частот обычно является измерительный генератор с плавной или плавно-ступенчатой настройкой, частоту которого f0 можно установить равной измеряемой частоте fx. Если частоты f0 и fx являются звуковыми, то об их равенстве можно приближённо судить, прослушивая поочерёдно тона создаваемых ими колебаний при помощи телефонов или громкоговорителя.

Погрешность измерений уменьшается практически до погрешности калибровки измерительного генератора, если одновременно подавать на телефоны электрические колебания обеих сравниваемых частот в соответствии со схемой на рис. 9, а. Если частоты f0 и fx близки друг к другу, то при сложении соответствующих им колебаний возникают акустические биения, которые проявляются в периодическом нарастании и спадании интенсивности прослушиваемого в телефонах Тф тона. Частота биений

может быть определена подсчётом на слух числа нарастаний или спаданий интенсивности тона за фиксированный промежуток времени. Для того чтобы биения проявлялись достаточно резко, амплитуды колебаний частот f0 и fx нужно устанавливать примерно одинаковыми; это следует из рассмотрения рис. 9, б, где средняя кривая колебаний, пульсирующих с частотой F, представляет собой результат сложения верхней и нижней кривых колебаний, соответствующих частотам f0 и fx.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 9. К принципу измерения низких частот методом акустических биений

Изменением настройки генератора частоту f0 приближают к частоте fx, что обнаруживается по возрастанию периода биений. При совпадении сравниваемых частот биения пропадают и в телефонах слышен однообразный тон. Вместо телефонов в качестве индикатора биений можно применить вольтметр переменного тока; это особенно целесообразно при измерении частот выше 5 кГц, тон которых в телефонах прослушивается не чётко.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 10. К принципу измерения высоких частот методом нулевых биений

Если изменять одну из частот, например fo, приближая её к другой частоте fx, тон в телефонах будет понижаться и при равенстве этих частот будут наблюдаться нулевые биения, обнаруживаемые по пропаданию звука в телефонах. Таким образом, измерение частоты сводится к определению частоты опорного генератора, при которой наступают нулевые биения. Как видно из графика на рис. 11, а, при отходе от точки нулевых биений разностная частота F возрастает как при увеличении, так и при уменьшении частоты генератора f0.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 11. Графики зависимости частоты биений от настройки генератора опорных частот

Погрешность измерения частоты определяется в основном погрешностью калибровки частоты f0 опорного генератора. Однако при точных измерениях приходится учитывать возможную ошибку в несколько десятков герц, обусловленную тем, что слуховой аппарат человека не воспринимает тона с частотой ниже некоторой частоты Fн; значения последней у различных людей лежат в пределах 10-30 Гц. Для исключения этой ошибки последовательно с телефонами Тф можно включить магнитоэлектрический измеритель тока, стрелка которого при очень низкой разностной частоте F будет пульсировать с этой частотой. При подходе к нулевым биениям колебания стрелки замедляются и их легко сосчитать за фиксированный промежуток времени.

Связь между опорным генератором и источником измеряемой частоты не должна быть сильной во избежание возникновения явления «захватывания», ведущего к возрастанию погрешности измерений. При сильной связи между двумя генераторами, разность частот настроек которых невелика, один из генераторов может навязать свою частоту другому и оба генератора будут создавать колебания одинаковой частоты. В этом случае частота биений F изменяется в соответствии с графиком на рис. 11, б, т. е. во всей области «захватывания» она оказывается равной нулю и звук в телефонах отсутствует.

В качестве чувствительного индикатора нулевых биений можно использовать электроннолучевой осциллограф, желательно с открытым входом по каналу Y. При этом в качестве нагрузки детекторной схемы (рис. 10) вместо телефонов включают резистор сопротивлением 50-200 кОм, напряжение с которого подаётся на вход У осциллографа. При включённой развёртке на экране просматривается кривая напряжения частоты биений F. С приближением к нулевым биениям период этого напряжения будет возрастать и при f0 = fx на экране видна лишь горизонтальная линия развёртки. Если измерения проводятся при выключенной развёртке, то наблюдаемая на экране вертикальная линия при f0 = fx превращается в точку.

На принципе измерения высоких частот методом нулевых биений основано действие кварцевых калибраторов и гетеродинных частотомеров.

Кварцевые калибраторы

Из приборов повышенной точности, применяемых для измерения высоких частот, самыми простыми являются кварцевые калибраторы. Они позволяют проверять шкалы радиоприёмных и радиопередающих (генераторных) устройств в ряде точек, соответствующих строго определённым (опорным) частотам.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 12. Функциональная схема кварцевого калибратора

Колебания, возбуждаемые кварцевым генератором, подводятся к гнезду (или зажиму) связи Ан, который вместе с присоединённым к нему небольшим проводником или штырём играет роль приёмной или передающей антенны в зависимости от характера использования прибора. С целью экранировки прибор обычно помещают в металлический кожух.

При проверке шкал радиоприёмников калибратор служит источником колебаний ряда опорных частот, излучаемых через провод связи. Приёмник последовательно настраивают на различные гармоники кварцевого генератора и определяют соответствующие им точки шкалы. Если приёмник работает в телеграфном режиме, то его настройку на гармонику генератора фиксируют по нулевым биениям с частотой второго гетеродина, прослушиваемым в телефонах или громкоговорителе, подключённых к выходу приёмника. Шкалы приёмников прямого усиления проверяют при обратной связи, доведённой до генерации. Для проверки градуировки приёмников, работающих только в телефонном режиме, например радиовещательных, колебания кварцевого генератора необходимо промодулировать звуковой частотой, что требует введения в состав калибратора генератора колебаний частоты 400 или 1000 Гц (в приборах с сетевым питанием иногда используют для модуляции напряжение частотой 50 или 100 Гц). При этом настройку приёмника на гармонику кварцевого генератора производят по наибольшей громкости тона, воспроизводимого громкоговорителем, или, значительно точнее, по максимальным показаниям вольтметра, подключаемого к выходу приёмника.

Если кварцевый калибратор предназначен также для проверки шкал высокочастотных генераторов, например радиопередатчиков, то он дополняется детектором (смесителем), вход которого соединяется с гнездом связи Ан и выходом кварцевого генератора. Колебания проверяемого передатчика, наводимые в проводнике связи, создают биения с ближайшей к ним по частоте гармоникой кварцевого генератора; в результате детектирования выделяются колебания разностной частоты биений, которые после усиления прослушиваются в телефонах Тф. Передатчик последовательно настраивают на частоты ряда гармоник генератора по нулевым биениям и тем самым определяют соответствующие им точки частотной шкалы передатчика.

Основным недостатком кварцевых калибраторов является многозначность результатов измерений, поскольку нулевые биения позволяют установить лишь факт равенства измеряемой частоты одной из гармоник кварцевого генератора без фиксации номера этой гармоники. Во избежание ошибки в установлении частоты гармоники, создающей нулевые биения, желательно, чтобы исследуемое устройство имело шкалу частот, приближённо проградуированную с помощью какого-либо прибора с однозначной оценкой частоты (резонансного частотомера, измерительного генератора и т. п.), точность измерений которого может быть невелика.

Разность частот соседних опорных точек калибратора равна основной частоте кварцевого генератора f0. С целью охвата основных радиовещательных диапазонов частоту f0 часто берут равной 100 кГц, что обеспечивает проверку шкал радиоустройств до частот порядка 10 МГц (λ = 30 м). Для расширения диапазона измеряемых частот в сторону более коротких волн и исключения ошибки в определении частоты используемой гармоники предусматривают возможность работы кварцевого генератора на двух стабилизированных и находящихся в 10-кратном отношении основных частотах, равных обычно 100 и 1000 кГц. Каждой из этих частот отвечает своя сетка опорных точек. Принцип совместного использования обеих основных частот можно уяснить из следующего примера. Предположим, что проверяется настройка передатчика на частоте 7300 кГц. Тогда калибратор первоначально включают на основную частоту 1000 кГц. Передатчик настраивают по нулевым биениям на ближайшую к искомой частоту, кратную 1000 кГц, т. е. на частоту 7000 кГц. На этой частоте возможность ошибки практически исключена, так как опорные точки расположены редко, через 1000 кГц. Затем калибратор переключают на основную частоту 100 кГц; при точной подгонке кварцев нулевые биения должны сохраниться. Настройку передатчика плавно изменяют по направлению к требуемой частоте и отмечают последовательно точки шкалы, соответствующие нулевым биениям на частотах 7100, 7200 и 7300 кГц.

Если требуется уменьшить интервал между соседними опорными частотами, то применяют делители частоты, которые обычно выполняются по схеме мультивибратора, синхронизируемого на субгармонике входного сигнала. Так, с помощью двух каскадов деления с коэффициентами деления, равными 10, при основной частоте кварцевого генератора 1 МГц можно получить колебания с основными частотами 100 и 10 кГц и большим числом гармоник. Тогда точка шкалы, отвечающая, например, частоте 7320 кГц, будет выявлена при последовательном прохождении опорных точек на частотах 7000, 7100, 7200, 7300, 7310 и 7320 кГц. При основной частоте кварца 100 кГц с помощью двух делителей можно получить колебания с основными частотами 10 и 1 (или 2) кГц, однако их гармоники на высоких частотах будут очень слабыми. Колебания комбинационных частот с малыми интервалами между опорными точками, но имеющие значительную интенсивность, могут быть получены методом смешивания колебаний нескольких основных частот.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 13. Схема универсального кварцевого калибратора

На рис. 13 приведена схема простого кварцевого калибратора, пригодного для измерения частоты генераторных и радиоприёмных устройств. Кварцевый генератор на транзисторе Т2 возбуждает колебания основной частоты 100 или 1000 кГц в зависимости от установки переключателя В2. Точная подгонка основных частот под номиналы производится подстроечными сердечниками катушек L1 и L2. Искажение формы колебаний, необходимое для получения большого числа гармонических составляющих, достигается включением между эмиттером и базой транзистора Т2 диода Д1. При необходимости модуляции этих колебаний выключателем В1 запускается генератор низкой частоты на транзисторе Т1. Детектирование биений осуществляется диодом Д2, высокочастотные составляющие выпрямленного тока отфильтровываются конденсатором С9.

Напряжение частоты биений, усиленное транзистором Т3, создаёт звуковые колебания в телефонах Тф.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 14. Схема кварцевого калибратора с делителем частоты

На рис. 14 представлена схема кварцевого калибратора, предназначенного для градуировки частотных шкал радиоприёмников. Кварцевый генератор на транзисторах Т1 и Т2 возбуждает колебания частоты 100 кГц. Точная подгонка частоты под номинал может выполняться подбором ёмкости конденсатора С2 или подстроечным конденсатором небольшой ёмкости, включаемым параллельно контактам кварцедержателя. Параметры мультивибратора на транзисторах Т3, Т4, служащего для деления частоты в 10 раз, подбираются такими, чтобы в режиме свободных автоколебаний он генерировал колебания с частотой, несколько меньшей 10 кГц. Тогда при воздействии на него колебаний кварцевого генератора он будет синхронизироваться на частоте 10 кГц; это должно быть тщательно проверено при наладке прибора: между колебаниями смежных гармоник частоты 100 кГц в 9 точках шкалы проверяемого устройства должны проявляться гармоники частоты 10 кГц. Обилию гармоник способствует уменьшение длительности импульсов с помощью дифференцирующих цепочек С3, R6 и С6, R12, а также усиление импульсов включённым на выходе импульсным усилителем на транзисторе Т5.

При эксплуатации кварцевых калибраторов следует учитывать, что вследствие старения собственная частота кварцевых резонаторов со временем несколько изменяется.

Гетеродинные частотомеры

Гетеродинные частотомеры применяются для точных частотных измерений в плавном диапазоне высоких частот. В принципе гетеродинный частотомер отличается от кварцевого калибратора, выполненного по функциональной схеме на рис. 12, лишь тем, что вместо кварцевого генератора в нем используется гетеродин, т. е. маломощный генератор с плавно регулируемой частотой настройки. Наличие смесителя позволяет использовать прибор не только для градуировки частотных шкал радиоприёмников, но и для измерения методом нулевых биений частоты генераторов. Индикация нулевых биений осуществляется телефонами, осциллографическими и электронно-световыми индикаторами, а также стрелочными измерителями.

Погрешность измерений гетеродинного частотомера в основном определяется стабильностью частоты гетеродина и погрешностью её установки. Поэтому часто предпочитают гетеродины выполнять на электронных лампах. Повышению стабильности частоты способствуют правильный выбор схемы и конструкции гетеродина, применение в нем деталей с малым температурным коэффициентом, включение буферного каскада между гетеродином и выходными цепями, стабилизация напряжений питания, длительный прогрев прибора под током перед измерениями. Для повышения плавности регулировки и точности установки частоты управление конденсатором настройки гетеродина обычно осуществляют через верньерный механизм с большим замедлением (до 100-300 раз). Непосредственный отсчёт частоты по шкале конденсатора переменной ёмкости производят лишь в самых простых конструкциях; в большинстве приборов шкала выполняется равномерной с очень большим числом делений (до нескольких тысяч), а отсчёт по ней переводится в частоту при помощи таблиц или графиков.

С целью уменьшения числа частотных поддиапазонов и повышения устойчивости частоты гетеродины обычно работают в узком участке сравнительно невысоких частот (при коэффициенте перекрытия, равном двум), а для измерений используются как основные частоты генерируемых колебаний, так и ряд их гармоник; возникновение последних обеспечивается подбором режима работы гетеродина или буферного усилителя. Например, в частотомере широкого применения типа Ч4-1 с общим диапазоном измеряемых частот от 125 кГц до 20 МГц гетеродин имеет два плавных поддиапазона основных частот: 125-250 кГц и 2-4 МГц. На первом поддиапазоне при использовании первой, второй, четвёртой и восьмой гармоник удаётся плавно перекрыть полосу частот 125-2000 кГц; на втором поддиапазоне при использовании первой, второй, четвёртой и частично пятой гармоник перекрывается полоса частот 2-20 МГц. Таким образом, каждому положению ручки настройки гетеродина соответствуют три или четыре рабочие частоты, значения которых могут быть определены по градуировочной таблице. Например, измерение частот 175, 350, 700 и 1400 кГц производится при одной и той же настройке гетеродина на основную частоту fг = 175 кГц.

Многозначность частот настройки гетеродина создаёт возможность ошибки в установлении гармоники, с которой колебания измеряемой частоты fx создают биения. Поэтому, приступая к измерениям, необходимо знать приближённое значение частоты fx. Однако последнюю можно определить и расчётным путём при помощи самого гетеродинного частотомера.

Предположим, что при изменении настройки гетеродина получены нулевые биения с частотой fx при двух соседних значениях основных частот fг1 и fг2 одного и того же поддиапазона гетеродина. Очевидно, что частота fx является одновременно гармоникой обеих этих частот, т. е.

Очень малая погрешность измерений в весьма широком диапазоне частот (от низких до сверхвысоких) достигается при сочетании двух частотомеров: гетеродинного и электронно-счётного. Последний, помимо самостоятельного использования в присущем ему диапазоне частот, может быть применён для точного измерения частоты настройки гетеродина при достижении нулевых биений; при этом оказываются излишними кварцевый генератор, градуировочные таблицы и графики.

Резонансные частотомеры

Особенностями резонансных частотомеров, применяемых для измерения высоких и сверхвысоких частот, являются простота конструкции, быстрота функционирования и однозначность результатов измерений; погрешность измерений составляет 0,1-3%.

Резонансный частотомер представляет собой колебательную систему, настраиваемую в резонанс с измеряемой частотой fx возбуждающих её колебаний, которые поступают от исследуемого источника через элемент связи. Резонансная частота определяется по показаниям калиброванного органа настройки. Состояние резонанса фиксируется с помощью встроенного или внешнего индикатора.

Частотомеры, измеряющие частоты от 50 кГц до 100-200 МГц, выполняются в виде колебательного контура из элементов с сосредоточенными постоянными: катушки индуктивности L0 и конденсатора переменной ёмкости С0 (рис. 16). В контуре частотомера наводится Э.Д.С. измеряемой частоты fx, например за счёт индуктивной связи с источником колебаний через катушку L0 или небольшую штыревую антенну, присоединяемую к гнезду Ан. При маломощном источнике связь с последним может быть ёмкостной через конденсатор связи Ссв (ёмкостью в несколько пикофарад) и проводник связи. Изменением ёмкости конденсатора С0 контур настраивают в резонанс с частотой fx по максимальным показаниям индикатора резонанса. При этом измеряемая частота fx, равная собственной частоте контура:

определяется по шкале конденсатора С0.

При фиксированной индуктивности L0 диапазон измеряемых частот ограничивается коэффициентом перекрытия под которым понимают отношение максимальной частоты настройки частотомера fм к наименьшей частоте fн при изменении ёмкости контура от начального значения Сн до максимального См. Начальная ёмкость контура Сн слагается из начальной ёмкости конденсатора С0, ёмкости монтажа и ёмкостей постоянных или подстроечных конденсаторов, включаемых в контур с целью получения требуемого коэффициента перекрытия или для других целей (рис. 17). При необходимости расширения диапазона измеряемых частот частотомер снабжается несколькими катушками различной индуктивности, сменными (рис. 16) или переключаемыми (рис. 17). В последнем случае неиспользуемые катушки (если они не экранированы) желательно замыкать накоротко во избежание отсасывания ими энергии из контура частотомера при частотах настройки, близких к собственным частотам этих катушек; при этом связь с источником колебаний осуществляют через гнездо связи Ан или посредством выносной катушки связи Lсв из одного или нескольких витков, подключаемой к контуру гибким высокочастотным кабелем (рис. 17).

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 16. Схема резонансного частотомера с индикатором тока и сменными контурными катушками

В качестве индикаторов тока иногда применяют термоэлектрические миллиамперметры с током полного отклонения до 10 мА, включаемые последовательно в контур частотомера (рис. 16); при эксплуатации такого частотомера следует весьма осторожно устанавливать связь с объектом измерений и не допускать перегрузки термоприбора при подходе к резонансу. Простейшим индикатором тока может служить миниатюрная лампочка накаливания Л; погрешность измерений при этом, естественно, возрастает.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 17. Схемы резонансных частотомеров с индикаторами напряжения и переключаемыми контурными катушками

Если исследуемые колебания являются модулированными, то индикатором может служить высокоомный телефон Тф (рис. 17, а). При этом резонанс отмечают по наибольшей громкости тона модулирующей частоты. Такой частотомер пригоден для слухового контроля качества работы радиотелефонных передатчиков.

Резонансные частотомеры характеризуются чувствительностью, т. е. минимальным значением подводимой к ним высокочастотной мощности, при котором обеспечивается чёткая индикация резонанса; обычно оно находится в пределах 0,1-5 мВт, а при использовании лампочки накаливания возрастает до 0,1 Вт. С целью повышения чувствительности в индикатор резонанса иногда вводят (после детектора) транзисторный усилитель постоянного тока с большим входным сопротивлением; простейшая схема такого усилителя показана на рис. 17, б.

На сверхвысоких частотах контуры из элементов с сосредоточенными постоянными становятся малоэффективными из-за резкого уменьшения их добротности. В диапазоне частот от 100 до 1000 МГц достаточно хорошие результаты достигаются в частотомерах с контурами смешанного типа, имеющими сосредоточенную ёмкость и распределённую индуктивность (рис. 18). В качестве элемента индуктивности L0 используется криволинейный отрезок (виток) посеребренной медной проволоки или трубки диаметром 2-5 мм. Переключатель В определяет поддиапазон измерений. Настройка частотомера производится изменением рабочей длины витка индуктивности L0 посредством поворотного контактного движка. Верхний предел измеряемых частот ограничивается значением ёмкости монтажа См. Связь с источником исследуемых колебаний осуществляется через виток связи L1.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 18. Схема резонансного частотомера с контуром смешанного типа

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 19. Схема широкодиапазонного однопредельного резонансного частотомера СВЧ

Перестройка частотомера, возбуждаемого источником колебаний частоты fx, вызывает изменение тока в его контуре в соответствии с резонансной кривой последнего (рис. 20). Чем выше добротность контура, тем острее его резонансная кривая и тем меньше возможная ошибка при фиксации резонанса. Для достижения высокой добротности элементы контура должны иметь малые потери, а связь контура с индикатором резонанса и исследуемым источником должна быть возможно слабее.

Связь с индикатором можно уменьшить, применив, например, ёмкостный делитель напряжения (рис. 17, б) с отношением ёмкостей С2/С1 >> 1. Следует, однако, учитывать, что ослабление связи с контуром ведёт к необходимости повышения чувствительности индикатора или усиления связи с исследуемым источником.

При использовании в частотомере прямочастотного конденсатора можно получить почти равномерную шкалу частот. Градуируют резонансные частотомеры при помощи образцовых гетеродинных частотомеров, а в диапазонах СВЧ для этого применяют измерительные линии. Приближенную градуировку можно выполнить, имея измерительный генератор или передатчик с плавным диапазоном частот.

Метод биений применяют при точном измерении параметров колебаний. Смотреть фото Метод биений применяют при точном измерении параметров колебаний. Смотреть картинку Метод биений применяют при точном измерении параметров колебаний. Картинка про Метод биений применяют при точном измерении параметров колебаний. Фото Метод биений применяют при точном измерении параметров колебаний

Рис. 20. Резонансная характеристика резонансного частотомера

При измерениях частотомер или его элемент связи вносят в зону излучения исследуемого источника. Подбором их взаимного расположения устанавливают такую связь, чтобы при резонансе стрелка индикатора находилась примерно в середине его шкалы.

При малой чувствительности частотомера приходится усиливать связь с источником колебаний; это ведёт к уплощению резонансной характеристики частотомера, что затрудняет точную фиксацию состояния резонанса. Для уменьшения возможной ошибки применяют способ двух отсчётов. После приближённой настройки частотомера в резонанс с измеряемой частотой fх изменением ёмкости С0 расстраивают контур сперва в одну, а затем в другую сторону от резонансной частоты до получения одного и того же показания индикатора (I1-2) примерно в пределах 50-70% резонансного значения Iм (рис. 20). Так как при этом используются крутые склоны резонансной кривой, то определить частоты настройки контура f1 и f2, соответствующие току можно с большой точностью. Измеряемая частота fх = (f1 + f2)/2.

Если исследуемые колебания несинусоидальны, то возможна настройка частотомера на одну из гармоник. При этом частотомер обнаружит настройку и на ряд других частот, кратных основной частоте колебаний. Последняя определится как самая низкая из ряда найденных резонансных частот.

Если Э.Д.С., наводимая в контуре частотомера, недостаточна для нормальной работы индикатора резонанса, то измерение можно выполнить способом реакции (поглощения, абсорбции): настройку в резонанс определяют по воздействию частотомера на режим генератора, от которого измерительный контур поглощает некоторую энергию. Между контурами генератора и частотомера устанавливают достаточно сильную связь и плавно изменяют настройку последнего. При резонансе постоянная составляющая анодного (или коллекторного) тока генератора достигает максимума, а постоянная составляющая тока управляющей сетки (или базы) резко падает, что может быть обнаружено при включении чувствительного измерителя постоянного тока в одну из указанных цепей. На частоту генерируемых колебаний частотомер не влияет, ибо при резонансе он вносит в контур генератора лишь активное сопротивление.

Резонансный частотомер является прибором пассивного действия, так как его работа основана на поглощении энергии источника измеряемой частоты. Поэтому он непригоден для непосредственного измерения частоты настройки радиоприёмников и изолированных колебательных контуров. Однако несущую частоту радиостанции, на которую настроен приёмник, можно измерить достаточно точно способом реакции. Для этого контур частотомера связывают с антенной цепью приёмника посредством включаемой в эту цепь катушки связи или приближением к магнитной антенне. Настройку частотомера изменяют до получения резонанса, который обнаруживается по резкому спаду громкости звуковых сигналов, воспроизводимых приёмником.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *