За что отвечает окуляр в микроскопе
Что можно увидеть в оптический и цифровой микроскопы и как ими пользоваться
Содержание
Содержание
При проведении научных и любительских исследований невозможно обойтись без микроскопа. Он не только приблизит исследователя к новым открытиям, но и поможет рассмотреть удивительный мир, открывающийся в окружающих нас вещах. Что именно можно увидеть в микроскоп, как им пользоваться и какой лучше подойдет — в этом материале.
Что такое микроскоп
Прообраз первого микроскопа появился еще в 16 веке и с тех пор устройство прошло длинный путь своего становления и развития. Микроскопом называют прибор, предназначенный для увеличения мелких или практически не видимых человеческим глазом предметов и объектов. Процессы такого изучения называют микроскопией, которая подразделяется на категории в зависимости от вида микроскопа.
Где же можно использовать данное устройство:
На вопрос «Кто изобрел микроскоп?» до сих пор нет однозначного ответа, так как многие ученые и любители работали над похожими системами. Тем не менее часто выделяют Иоанна Липперсгея, Захария Янсена и, конечно же, Галилео Галилея.
Многие помнят или представляют микроскоп, как прибор с одним или двумя окулярами, которые при увеличении позволяют исследователю рассмотреть предмет в многократном увеличении. Это и есть классический прямой оптический микроскоп. Современная микроскопия использует множество типов приборов: электронные, инвертированные, лазерные, люминесцентные, стереоскопические и другие.
Так, например, люминесцентные подсвечивают изучаемый объект и позволяют изучать его как бы освещенным изнутри собственным светом за счет специальной лампы и системы светофильтров. А электронные, в отличие от оптических, используют вместо света пучки электронов. В общем для каждой отрасли науки и даже изучаемого объекта нужен определенный прибор. Мы же рассмотрим наиболее популярные и доступные рядовым пользователям модели.
Основные элементы микроскопа
И так, микроскопы отличаются друг от друга видами и целевым назначением. Соответственно, и устроены они по-разному. Существует две системы — оптическая и механическая. Первая включает в себя все элементы без которых микроскоп не будет микроскопом.
Окуляр
Глядя в глазной окуляр исследователь и будет изучать какой-либо объект. Окуляр дает некоторое фиксированное увеличение (10x, 20x, 25x и т.д.). Современные окуляры имеют несколько линз, встроенных в металлический корпус (тубус). В зависимости от количества окуляров микроскопы подразделяются на монокулярные, бинокулярные и тринокулярные. Бинокулярные создают стереокартинку, более удобны чем молекулярные, но в отличие от последних требуют привыкания и дополнительных настроек при использовании двух окуляров. Если используется цифровой микроскоп, то в нем окуляр как таковой отсутствует — его роль выполняет камера.
Объектив
Важнейшая и самая сложная часть прибора, позволяющая в купе с окуляром детально рассмотреть любой объект исследования. Чаще всего состоит из металлической трубки с несколькими линзами, дающими кратное увеличение. Объектив смотрит непосредственно на предмет изучения, точнее сказать — на предметный столик. Полученное с помощью объектива изображение мы и видим в окуляр.
В любительских и профессиональных устройствах может быть несколько объективов (не менее 3-х) встроенных в устройство или насадку револьверного типа. Пользователь просто проворачивает насадку и смотрит в нужный объектив. Чем больше объективов разной кратности, тем лучше для пользователя. Кратность указывается на корпусе объектива.
У каждого окуляра и объектива есть свое увеличение, которое вместе образует общее увеличение микроскопа. Чтобы высчитать его? нужно перемножить кратность увеличения окуляров и объективов. Так, например, если кратность окуляра составляет 10х, а объектива 40х, то общее увеличение будет составлять 400х. В некоторых приборах общее увеличение может составлять до 1200х. При таком увеличении можно рассматривать клетки растений и животных, строение насекомых, пыльцу растений и т.п.
Подсветка
При изучении объект, когда он расположен на подставке, необходимо подсвечивать снизу пучком света. Свет можно направить как простым зеркалом, так и более сложными устройствами, например, электроосветителями. Также подсветка может быть комбинированная для просмотра прозрачных и непрозрачных объектов. На нижних фотографиях указана комбинированная подсветка. На правом фото также виден небольшой винт регулировки подсветки.
Микроскопы используют при реставрациях образцов мировой культуры. Например, для восстановления терракотовой армии или полотен эпохи Возрождения.
А сейчас перейдем к механической системе микроскопа. Вот некоторые элементы, которые она включает в себя.
Подставка
Это основание микроскопа, отвечающее за его устойчивость. Если сюда прибавить еще и штатив, то вместе получится корпус микроскопа. На него крепятся все остальные части прибора. Чтобы фокусировать изображение, на корпусе обычно располагаются два винта, один из которых приближает или отдаляет объектив от объекта (грубая регулировка), а второй помогает произвести более тонкую фокусировку на предмете (тонкая регулировка).
Предметный столик
На него помещаются объекты для изучения. В центре столика есть небольшое круглое отверстие, через которое на предмет попадает пучок света. Снабжен зажимами. В некоторых моделях цифровых микроскопов, предметный столик отсутствует.
Дополнительные аксессуары
Помимо самого микроскопа потребуются и дополнительные инструменты, без которых работа будет невозможна или затруднительна. Главным здесь будет предметное стекло, на которое помещается предмет, подлежащий изучению. При необходимости он сверху накрывается покрывным стеклом. Также пригодятся скальпель, пипетка и пинцет. Пипетка будет полезна при наборе жидких образцов, пинцетом можно передвигать объекты изучения, а скальпелем отрезать небольшие частицы от предметов. Собирать и хранить какие-либо образцы желательно в специальных контейнерах, хотя можно обойтись и подручными средствами.
Принцип работы микроскопа
Кратко коснемся принца работы устройства и разберем его на примере оптического микроскопа. Для того, чтобы что-то рассмотреть в окуляры, нужна подсветка. В зависимости от вида прибора это может быть естественное или искусственное освещение, направление которого регулируется зеркалом. Кстати говоря, сейчас это уже устаревшая система. Все чаще используют свет, исходящий от встроенной в основание микроскопа лампы, которая питается от сети или батарейки. Подсветка лампы чаще всего регулируемая.
Поток света (естественного или от лампы) проходит через отверстие в предметном столике, пронизывает объект изучения насквозь и попадает на линзы объектива, а затем — окуляра, которые обеспечивают увеличение. Ну а далее в дело вступает опытный взгляд исследователя.
Как пользоваться оптическим микроскопом
Перед началом работы нужно подготовить рабочее место, очистить его от мусора и пыли. Желательно вымыть руки или использовать перчатки. Если есть пробелы в знаниях или сомнения, относящиеся к работе микроскопа, то обязательно нужно изучить инструкцию. В целом же работать с микроскопом не так сложно, как кажется на первый взгляд.
Изучаемый предмет помещается на предметный столик. Так можно изучать продукты питания, бумагу, насекомых, волосы и другие мелкие предметы. Несколько сложнее с жидкостью или в том случае, когда исследуемые объекты требуют предварительной подготовки. Например, тонкого среза или смеси в виде кашицы. На них нужно капнуть воды или специальной жидкости и сверху осторожно накрыть покровным стеклом. Также можно использовать готовые наборы микропрепаратов, в которые входит предметное стекло с уже нанесенным на него объектом исследования. Это может быть кошачья шерсть, голова мухи, срез дождевого червя, костная ткань, минералы и многое другое.
Далее нужно осуществить фокусировку. Винтом грубой регулировки следует приближать и отдалять предмет, пока не получится четкое изображение. После этого винтом (или колесиком) тонкой настройки добиваемся максимальной резкости картинки. Начинать фокусировать нужно с минимального значения, постепенно переключаясь на более высокое увеличение. Например, если прибор имеет два объектива значением 2х и 4х, то начинать фокусировку нужно с 2х, а затем, вращая револьверную насадку увеличивать значение.
Начав сразу же с максимального увеличения, пользователь рискует увидеть лишь малую часть объекта или же вообще ничего не увидеть. Если же прибор имеет только один объектив, то увеличение у него будет постоянным. Важно помнить, что винтом грубой фокусировки объектив приближается к предметному столику, поэтому есть большой риск сломать стекло, повредить сам объектив и даже получить порезы. Искать фокус следует не к стеклу, а от стекла. Стоит заметить, что на некоторых объективах, в первую очередь стократных, устанавливается специальная оправа, которая пружинит при встрече со стеклом. Однако, ее цель состоит не в защите линзы, а в создании более плотного контакта стекла с объективом.
Как пользоваться цифровым микроскопом
Цифровой микроскоп работает по-другому. У него отсутствует окуляр и сам он напоминает цифровую камеру, только с более многократным увеличением. Такие микроскопы можно встретить в нескольких вариантах, с различными характеристиками, назначением и соответственно ценами. Возьмем для примера стандартный настольный микроскоп, который больше относится к любительским. Подключив его через USB порт к компьютеру, пользователь также устанавливает специальное программное обеспечение, с помощью которого возможно рассмотреть изображение. После подключения, под объектив прибора размешается объект изучения, после чего исследователь сможет рассмотреть полученное изображение на мониторе компьютера. Считывается изображение посредством цифровой камеры.
Исследования через микроскоп — это не только полезно, но еще и увлекательно. Ученые используют профессиональные, мощные и дорогие устройства. Любителям же подойдут цифровые или бинокулярные оптические модели, с помощью которых можно изучать окружающий мир: насекомых, растения, продукты питания, камни, веточки деревьев и многое другое.
Объектив и окуляр микроскопа
В одной из наших предыдущих статьей мы рассказывали о механической системе микроскопа. Пришло время поговорить и об оптической. Самые важные и незаменимые ее элементы – объектив и окуляр микроскопа. Иногда этих аксессуаров бывает несколько – все зависит от модели оптического прибора. В детских микроскопах редко встретишь больше одного объектива и одного окуляра. А вот комплектация профессиональной модели может включать, например, шесть объективов и четыре окуляра. Зачем такое разнообразие – давайте разбираться!
Окуляр устанавливается сверху, в него мы смотрим. Вместе с монокулярным микроскопом поставляется как минимум один окуляр, а вот для бинокулярных моделей нужна уже хотя бы пара. Объектив микроскопа – аксессуар, который «смотрит» на образец. Он расположен прямо над предметным столиком. В самые простые детские микроскопы устанавливают один объектив, в микроскопы любительского и профессионального уровня – не менее трех. Если объективов несколько, они фиксируются в револьверном устройстве – механизме, который позволяет их менять прямо во время наблюдений.
У каждого окуляра и объектива есть свое увеличение. А увеличение микроскопа высчитывается по формуле: кратность окуляра умножить на кратность объектива. Поэтому чем больше в комплекте поставки окуляров и объективов, тем больше в микроскопе вариантов увеличений. Рассмотрим на примере. Есть два окуляра кратностью 10х и 12,5х и три объектива с кратностью 10х, 40х и 100х. На какое увеличение микроскопа можно рассчитывать? Ответ в табличке ниже.
Объектив 10х | Объектив 40х | Объектив 100х | |
Окуляр 10х | 100 | 400 | 1000 |
Окуляр 12,5х | 125 | 500 | 1250 |
Например, мы видим, что взяв окуляр 10х и объектив 40х микроскопа, мы получили увеличение в 400 крат. Это простое перемножение характеристик выбранных оптических аксессуаров.
В нашем интернет-магазине вы можете найти микроскопы с разной комплектацией и возможностями. Раздел представлен по ссылке.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Окуляр
Окуля́р — элемент оптической системы, обращённый к глазу наблюдателя, часть оптического прибора (видоискателя, дальномера, бинокля, микроскопа, телескопа), предназначенная для рассматривания изображения, формируемого объективом или главным зеркалом прибора.
Современные телескопы исследовательского класса обходятся без окуляров. Вместо этого в них используется ПЗС-матрица, помещённая в фокусе телескопа. Некоторые любители также оборудуют свои телескопы ПЗС. Тем не менее, наблюдение через окуляр до сих пор является самым распространённым из-за своей простоты и дешевизны по сравнению с ПЗС.
Содержание
Конструктивные особенности
Простейший окуляр, например, окуляр Гюйгенса, состоит из двух линз: коллектива (называемого также линзой поля) и глазной линзы; сложные окуляры состоят из четырёх — пяти или более линз. Некоторые окуляры имеют фокусировку для близоруких и дальнозорких. Для микрофотографии пригодны только компенсационные окуляры, фотографические окуляры и так называемые гомалы, или усиливающие системы. Также некоторые окуляры могут иметь встроенный наглазник.
Параметры окуляров
Элементы и группы
Элементы — это отдельные линзы, которые могут быть представлены как одиночными линзами (синглетами) или склеенными дублетами или (реже) триплетами. Когда линзы склеены парами или тройками, то они называются группами (линз).
Первые окуляры имели только одну линзу, которая строила весьма искажённые изображения. Двух- и трёхэлементые линзы были изобретены немного позже и быстро стали стандартом из-за хорошего качества изображения. Сейчас инженеры с помощью компьютеров и специализированного программного обеспечения разработали окуляры с семью или восемью элементами, дающие большие, хорошие, резкие изображения.
Внутренние отражения и блики
Внутренние отражения, также называемые бликами вызываются дисперсией света, проходящего через окуляр и снижают контраст изображения, проецируемого окуляром. Иногда из-за этого возникают т. н. «призрачные изображения». Из-за этого долгое время(до изобретения антибликовых покрытий) предпочитали использовать простые оптические схемы с минимальным количеством контактов между стеклом и воздухом.
Одним из решений этой проблемы на данный момент является использование тонкоплёночных покрытий на поверхности оптических элементов. Эти покрытия имеют толщину в одну-две длины волны и предназначены для уменьшения эффекта внутренних отражений путём изменения преломления света, проходящего через элемент. Некоторые покрытия могут также поглощать свет в процессе т. н. полного внутреннего отражения, если свет падает на покрытие под малым углом.
Хроматические аберрации
Латеральные хроматические аберрации вызываются разницей показателя преломления для света с разной длиной волны. Например, голубой свет, проходящий через элемент окуляра сфокусируется не в той же точке, что и красный. Из-за этого вокруг объектов может возникать цветная кайма или же наблюдаться общая размытость изображения.
Единственное решение этой проблемы — использование множества элементов, выполненных из разных видов стекла. Ахроматы (апохроматы) — это группы линз, которые собирают свет с соответственно двумя или тремя и более разными длинами волн в одном фокусе и почти устраняют цветную кайму. Низкодисперсные стёкла также могут использоваться для уменьшения(но не устранения) хроматической аберрации.
Лонгитудная хроматическая аберрация — это тот же эффект, возникающий из-за слишком больших фокусных расстояний объективов рефракторов. Микроскопы, фокусные расстояния линз которых в целом гораздо меньше не страдают от этого эффекта.
Посадочный диаметр
В оптических инструментах применяются, как правило, следующие стандартные посадочные диаметры трубки окуляра: для телескопов — 0.965″, 1.25″ и 2″ (в линейной мере 24.51, 31.75 мм и 50.8 мм), для микроскопов — 23.2 мм и 30 мм.
Фокусное расстояние
Фокусное расстояние окуляра- это расстояние от его главной плоскости до той точки, где лучи света или их продолжения(в случае окуляра Галлилея) пересекаются в одной точке. От фокусных расстояний окуляра и объектива или главного зеркала(в случае рефлектора) зависит угловое увеличение. Как правило, фокусное расстояние отдельного окуляра выражается в миллиметрах. При использовании окуляров с конкретным инструментом иногда предпочитают сортировать их по увеличениям, которые будут получаться при их применении.
Для телескопа, угловое увеличение, получаемое при использовании с каким- либо окуляром можно высчитать по формуле:
,
Увеличение возрастает при уменьшении фокусного расстояния окуляра или возрастании фокусного расстояния объектива или главного зеркала. Например, 25 мм окуляр с телескопом с фокусным расстоянием в 1200 мм даст увеличение в 48 раз, 4 мм же окуляр с тем же телескопом даст увеличение в 300 раз.
Астрономы- любители различают окуляры по их фокусному расстоянию. выраженному в миллиметрах. Обычно они составляют от 3 до 50 мм. Тем не мене. некоторые астрономы предпочитают различать окуляры по увеличению. даваемому ими с тем или иным инструментом. В астрономических отчётах лучше указывать увеличение. так как это даст больше представления о том. что видел наблюдатель. Тем не менее, без привязки к телескопу, увеличение становится величиной практически бесполезной для описания каких- либо свойств окуляра.
По фокусному расстоянию телескопические окуляры можно разделить на длиннофокусные, средние и короткофокусные.
Для сложного микроскопа соответствующая формула:
,
В отличие от телескопических, основной характеристикой микроскопических окуляров является увеличение, а не фокусное расстояние. Увеличение окуляра микроскопа и увеличение объектива
определяются по формулам:
,
откуда увеличение можно выразить, как произведение увеличений объектива и окуляра:
Например, при использовании 10× окуляра и 40× объектива микроскоп будет увеличивать в 400 раз.
Это определение углового увеличения проистекает из необходимости менять не только окуляры, но и объективы из-за чего увеличение получается зависящим от двух факторов. Исторически, Аббе описывал микроскопические окуляры отдельно в терминах углового увеличения окуляра и начального увеличения объектива. Это оказалось удобно для разработки оптических схем. но было неудобно для практической микроскопии, из- за чего от этой системы отказались.
Общепринятое расстояние наименьшего фокуса составляет 250 мм, и увеличение окуляра рассчитывается исходя из этой величины. Обычно увеличения составляют 8×, 10×, 15× и 20×. Фокусное расстояние окуляров в миллиметрах может быть определено делением 250 мм на увеличение окуляра.
Современные инструменты используют объективы, скорректированные на бесконечность, а не на 160 мм, и поэтому, требуют наличия дополнительной коррекционной линзы в тубусе микроскопа.
Положение фокальной плоскости
В некоторых типах окуляров, например, в рамсденовских — окуляр действует как увеличитель и его фокальная плоскость расположена за пределами окуляра, перед линзой поля. В этой плоскости можно разместить сетку или микрометрическое перекрестие. В окуляре Гюйгенса фокальная плоскость расположена между линзой поля и глазом наблюдателя, внутри окуляра и следовательно недоступна.
Поле зрения
Поле зрения определяет насколько много можно увидеть через окуляр. Поле зрения может меняться в зависимости от увеличения, получаемого с помощью данного телескопа или микроскопа и также зависит от характеристик самого окуляра.
Термин «поле зрения» может иметь два значения:
Истинное поле зрения угловой размер участка неба, видимого через окуляр, использованный с каким-либо телескопом и при соответствующем увеличении. Как правило это значение составляет от одной десятой градуса до двух градусов. Поле зрения окуляра угловой размер изображения, видимого через окуляр. Иными словами: насколько большим кажется изображение. Эта величина постоянна для любого окуляра с постоянным фокальным расстоянием и может быть использована для расчёта истинного поля зрения при использовании с каким-либо телескопом. Поле зрения окуляра может колебаться в пределах приблизительно 35 — 100 градусов.
Если известно поле зрения окуляра, то истинное поле зрения телескопа с этим окуляром можно рассчитать по следующей формуле:
,
Фокусное расстояние — это то расстояние, на котором линза или зеркало соберут лучи света в одну точку.
Формула имеет погрешность около 4 % или меньше при поле зрения окуляра до 40° и около 10 % для 60°.
Если поле зрения окуляра неизвестно, то истинное поле зрения можно приблизительно рассчитать по формуле:
,
Вторая формула в целом более точная, но производители обычно не указывают диаметр полевой диафрагмы. Первая формула не будет точна, если поле зрения не плоское или превышает 60°, что вполне обычно для окуляров с ультрашироким полем зрения.
По величине поля зрения окуляры делятся на: широкоугольные, средние и с «эффектом замочной скважины».
Вынос выходного зрачка
Вынос выходного зрачка — это расстояние от глазной линзы окуляра до точки на его оптической оси, куда следует поместить глаз, чтобы увидеть все поле зрения.
Как правило, вынос зрачка колеблется между 2 и 20 мм, в зависимости от конструкции окуляра. Длиннофокусные окуляры как правило имеют больший вынос зрачка. а короткофокусные — малый, что, как уже говорилось выше, может быть проблематичным. Рекомендованный минимальный вынос зрачка — около 5-6 мм.
От выноса зрачка зависит комфортность наблюдения. Так, при использовании окуляра с малым выносом зрачка, наблюдателю приходится располагать глаз очень близко к линзе окуляра (как бы вдавливая глаз в окуляр), что иногда доставляет неприятные ощущения, а в холодное время года грозит обморожением глазной роговицы. Плюс ко всему, ресницы, упираясь в линзы окуляра, оставляют следы на просветляющем покрытии. Как правило, чем короче фокусное расстояние окуляра, тем меньше вынос зрачка. Зная об этой проблеме, конструкторы предлагают различные оптические схемы, призванные расположить выходной зрачок на комфортном расстоянии. Так, некоторые модели окуляров имеют фиксированный вынос зрачка вне зависимости от фокусного расстояния. Однако слишком большой вынос выходного зрачка тоже доставляет неудобства во время наблюдений. Например, если длиннофокусный окуляр имеет вынос зрачка порядка 30-40 мм, придется в буквальном смысле «ловить изображение глазом». Практика показывает, что комфортное значение выноса выходного зрачка ограничено верхним пределом в 25 мм.
Если вы носите очки, то лучше подбирать окуляры с выносом зрачка равным 20 мм, если у Вас хорошее зрение, то ищите окуляры с выносом зрачка порядка 12 мм. [1]
Оптические схемы окуляров
Собирающая линза или окуляр Кеплера
Простая собирающая линза расположенная за фокусом объектива строит увеличенное перевёрнутое изображение. Этот тип окуляров использовался в микроскопах Захария Янсена в 1590 [2] году и был предложен для использования в телескопах Иоганном Кеплером в 1611 году в книге «Диоптрика» как способ увеличения поля зрения и увеличения существовавших тогда телескопов.
Рассеивающая линза или окуляр Галилея
Окуляр Гершеля
Окуляр Гершеля представляет собой стеклянную сферу со срезанным сегментом, обращённый плоской частью к глазу наблюдателя. Был изобретён Уильямом Гершелем в 1768 году.
Окуляр Гюйгенса
где и
являются фокусными расстояниями составляющих окуляр линз.
Из- за того, что в окулярах Гюйгенса не используется клей для удержания линз, любители астрономии иногда используют их для проекционных наблюдений Солнца, то есть для проецирования изображения Солнца на экран. Другие типы окуляров. в которых используется клей могут быть при таком использовании повреждены интенсивным сфокусированным солнечным светом.
Окуляр Миттенцвея
По оптической схеме аналогичен окуляру Гюйгенса, но с мениском в качестве линзы поля. Применяется в качестве особо длиннофокусного окуляра, когда необходимо поле до 55 — 60°. Аберрации исправлены также, как и в окуляре Гюйгенса.
Окуляр Рамсдена
Окуляр Рамсдена состоит из двух плоско — выпуклых линз с одинаковым фокусным расстоянием и сделанных из одинакового стекла, расположенных на расстоянии меньше одного фокусного расстояния друг от друга. Эта схема была создана изготовителем научного и астрономического оборудования Джесси Рамсденом в 1782 году. расстояние между линзами меняется в зависимости от дизайна, но обычно составляет что- то между 7/10 и 7/8 фокусного расстояния линз.
Окуляр Доллонда
Окуляр Доллонда представляет собой собирающий ахроматический дублет. Был создан английским оптиком Джоном Доллондом в 1760 году и практически представляет собой ахроматическую версию окуляра Кеплера.
Окуляр Фраунгофера
Предложен немецким оптиком Йозефом Фраунгофером и включает в себя 2 одинаковые плоско — выпуклые линзы, расположенные вплотную друг к другу. Этим он отличается от похожего на него окуляра Рамсдена. В окуляре отлично исправлен астигматизм, зато значительна кривизна поля, ограничивающая полезное поле зрения 30 — 35 градусами. В силу отсутствия склеенных поверхностей хроматизм увеличения не исправлен. По этой схеме построены некоторые из выпускаемых сегодня пластмассовых луп.
«Сплошные окуляры»
Отсутствие на протяжении длительного времени эффективных способов борьбы с паразитными бликами от непросветленных поверхностей линз заставило оптиков искать иные решения, позволяющие бороться с ними. Одним из таких способов можно считать предложенный оптиком Толлесом «сплошной» окуляр. По своему принципу действия он схож с окуляром Гюйгенса, но выполнен из одного куска стекла. Функцию полевой диафрагмы выполняет кольцевая проточка по ободу окуляра. В аберрационном отношении этот окуляр практически не отличается от гюйгенсовского.
Другой разновидностью «сплошного» окуляра можно считать предложенный американским физиком Чарльзом Гастингсом аналог окуляра Кельнера. Он состоит из двояковыпуклой толстой линзы и приклеенного к ней отрицательного мениска. Качество изображения не отличается от такового у окуляра Кельнера. Сейчас имеет лишь исторический интерес.
Очень похож на него и моноцентрический окуляр, созданный в ГОИ Дмитрием Дмитриевичем Максутовым в 1936 году для применения в лабораторных приборах. Также может рассматриваться как «сплошной» аналог окуляра Кельнера. Имеет довольно хорошую коррекцию аберраций в пределах поля 25 — 30°. Как и во всех окулярах с общим центром кривизны всех поверхностей, поле ограничено кривизной поля и астигматизмом. Конструкция удобна в изготовлении и эксплуатации, так как не требует точной центрировки относительно оси телескопа.
Несмотря на свою довольно простую конструкцию и не очень совершенное качество изображения, подобные окуляры могут представлять интерес и для современного любителя. Они наиболее удобны для наблюдений планет, когда требуется рассмотреть мелкие и малоконтрастные детали на их поверхностях. Дело в том, что любое просветляющее покрытие имеет мелкозернистую структуру и всегда слегка рассеивает проходящий через него свет, за счет чего вокруг ярких объектов образуется заметный ореол, на фоне которого и теряются детали изображения. Чем больше просветленных поверхностей в системе, тем в большей степени снижается контраст изображения наблюдаемого объекта. Довольно большим рассеянием обладают современные многослойные просветляющие покрытия. Обычная тщательно отполированная поверхность линзы вносит наименьшее рассеяние, поэтому идеальным окуляром для наблюдений планет (когда не требуется большого поля) остается простая непросветленная линза, свободная от бликов и практически не рассеивающая свет.
Окуляр Гастингса, тип II
«Однолинзовый» окуляр, представляющий собой симметричный склеенный триплет. Более известен как апланарная тройная лупа. В окуляре хорошо исправлены сферическая аберрация, хроматизм и кома. Поле зрения в 30 — 35° ограничено принципиально неустранимыми в этой системе астигматизмом и кривизной поля. Стеклянные лупы, выполненные по этой схеме, часто встречаются в продаже. Раньше широко использовался в качестве короткофокусного окуляра.
Окуляр Кельнера или «ахромат»
Окуляр Плёссла или «симметричный»
Окуляр Плёссла обычно состоит из двух дублетов и был разработан Георгом Симоном Плёсслом в 1860 году. Так как дублеты могут быть одинаковы, то этот окуляр иногда ещё называют симметричным. [8] Составные линзы Плёссла предоставляют широкое от 50 и больше градусов видимое поле зрения с относительно большим полем зрения. Это делает этот окуляр идеальным для самых разных целей от наблюдений объектов глубокого космоса до планетных наблюдений. Главным недостатком окуляров Плёссла является малый вынос зрачка по сравнению с ортоскопическими. У окуляров Плёссла вынос зрачка составляет 70-80 % от фокального расстояния. Это особо критично при фокусных расстояниях меньше 10 мм, когда наблюдение может стать некомфортным, особенно для людей, носящих очки.
Схема Плёссла была неясна до 1980-х, когда производители астрономического оборудования начали продавать переработанные версии этих окуляров. [9] Сейчас они очень популярны на рынке товаров для любительской астрономии, [10] где название «Плёссл» охватывает окуляры с как минимум четырьмя оптическими элементами.
Этот окуляр дорог в производстве из- за высоких требований к качеству стекла и необходимости точного соответствия собирающей и рассеивающей линз для предотвращения внутренних отражений. Из-за этого качество разных окуляров Плёссла отличается. Существуют заметные различия между дешёвым окуляром Плёссла с простым оптическим просветлением и хорошо сделанным окуляром Плёссла.
Ортоскопический или «Аббе»
Четырёхэлементный ортографический окуляр состоит из плоско-выпуклого собирающего синглета и склеенного собирающего триплета. Это даёт окуляру почти идеальное качество изображения и хороший вынос зрачка, но скромное поле зрения порядка 40°-45°. Они были изобретены Эрнстом Аббе в 1880 году. [5] Его называют «ортоскопическим» или «ортографическим» из- за малой дисторсии получаемого изображения и иногда его ещё называют просто «орто» или «Аббе».
До изобретения многослойного просветления и популярности окуляров Плёссла, ортоскопические окуляры были самыми популярными телескопическими окулярами. Даже сейчас они считаются хорошими для наблюдения Луны и планет.
Моноцентрический
Моноцентрический окуляр- это ахроматический триплет, составленный из двух элементов из кронового стекла, склеенных с элементом из флинтгласса. Элементы толстые, сильно изогнутые и их поверхности имеют общий центр, именно поэтому данный окуляр был назван моноцентрическим. Он был изобретён Адольфом Штайнхайлем приблизительно в 1883. [11] Этот окуляр, как и «сплошные» окуляры Роберта Толлеса, Чарльза Гастингса и Вильфреда Тейлора [12] свободен от бликов и даёт яркое контрастное изображение, что было очень важным фактором до изобретения антибликовых покрытий. [13] Он имеет узкое поле зрения около 25° [14] и пользуется спросом у любителей планетных наблюдений. [15]
Окуляр Эрфле
Окуляр Эрфле представляет собой пятиэлементную оптическую систему с двумя ахроматическими линзами и обычной линзой между ними. Этот тип окуляра был создан во время Первой Мировой Войны для военных целей и был описан Генрихом Эрфле в патенте США номер 1,478,704 в августе 1921 года и был предназначен для получения более широких полей зрения, чем на четырёхэлементных системах(например, Плёссла).
Окуляры Эрфле разработаны с расчётом на большое поле зрения(порядка 60 градусов), но они неприменимы на больших увеличениях из-за астигматизма и бликов. Тем не менее, с антибликовыми покрытиями на малых увеличениях(фокусное расстояние от 20 мм и выше) они приемлемы, и прекрасны при фокусном расстоянии от 40 мм и больше. Окуляры Эрфле очень популярны, так как имеют большие глазные линзы, хороший вынос зрачка и могут быть очень удобны в использовании.
Окуляр Кёнига
Окуляр Кёнига состоит из вогнуто — выпуклого собирающего дублета и плоско — выпуклой собирающей линзы. Сильно выпуклые поверхности дублета и собирающей линзы почти касаются друг друга. Вогнутая часть дублета обращена к источнику света, а почти плоская(на самом деле — немного выпуклая) часть собирающей линзы обращена к глазу наблюдателя. Данный окуляр был разработан в 1915 году немецким оптиком Альбертом Кёнигом (1871—1946) как упрощённая версия окуляра Аббе. Оптическая схема позволяет получать большие увеличения при большом выносе зрачка — наибольшем выносе зрачка до изобретения оптической схемы Наглера в 1979 году. Поле зрения около 55° делает данные окуляры схожими с окулярами Плёссла, но с тем преимуществом, что для их изготовления нужно на одну линзу меньше.
Современные версии окуляра Кёнига используют усовершенствованные стёкла или добавляют больше линз, собранных в различные комбинации дублетов и синглетов. Наиболее распространённой адаптацией является добавление положительной вогнуто- выпуклой линзы перед дублетом, вогнутой стороной к источнику света и выпуклой- к дублету. Современные модификации как правило имеют поля зрения 60°−70°.
Этот тип окуляров также известен как окуляр с удалённым зрачком.
RKE окуляр состоит из ахроматической линзы и двояковыпуклой собирающей линзы расположенных в обратном по отношению к окуляру Кельнера порядке. Он был разработан доктором Дэвидом Рэнком для Edmund Scientific Corporation, которая продавала их в конце 60-х- начале 70-х годов XX века. Данная оптическая схема предоставляет более широкое поле зрения, чем классический окуляр Кельнера и похожа на оптическую схему более распространённого окуляра Кёнига.
Окуляр Цейсса
Является развитием окуляра Кёнига. За счет добавления простой линзы в нем удалось получить более совершенную коррекцию астигматизма и дисторсии.